ssboost commited on
Commit
7f6bb54
ยท
verified ยท
1 Parent(s): 740aaa2

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +111 -47
app.py CHANGED
@@ -2,7 +2,7 @@ import spaces
2
  import random
3
  import torch
4
  from huggingface_hub import snapshot_download
5
- from transformers import CLIPProcessor, CLIPModel
6
  from kolors.pipelines import pipeline_stable_diffusion_xl_chatglm_256_ipadapter, pipeline_stable_diffusion_xl_chatglm_256
7
  from kolors.models.modeling_chatglm import ChatGLMModel
8
  from kolors.models.tokenization_chatglm import ChatGLMTokenizer
@@ -10,37 +10,34 @@ from kolors.models import unet_2d_condition
10
  from diffusers import AutoencoderKL, EulerDiscreteScheduler, UNet2DConditionModel
11
  import gradio as gr
12
  import numpy as np
 
13
  import os
14
- from accelerate import Accelerator
 
15
 
16
- # Accelerate ์ดˆ๊ธฐํ™”
17
- accelerator = Accelerator()
18
 
19
- device = accelerator.device
20
-
21
- # ๋ชจ๋ธ ์ฒดํฌํฌ์ธํŠธ ๋‹ค์šด๋กœ๋“œ
22
  ckpt_dir = snapshot_download(repo_id="Kwai-Kolors/Kolors")
23
  ckpt_IPA_dir = snapshot_download(repo_id="Kwai-Kolors/Kolors-IP-Adapter-Plus")
24
 
25
- # ChatGLMModel, AutoencoderKL, EulerDiscreteScheduler, UNet2DConditionModel ๋กœ๋“œ
26
  text_encoder = ChatGLMModel.from_pretrained(f'{ckpt_dir}/text_encoder', torch_dtype=torch.float16).half().to(device)
27
  tokenizer = ChatGLMTokenizer.from_pretrained(f'{ckpt_dir}/text_encoder')
28
  vae = AutoencoderKL.from_pretrained(f"{ckpt_dir}/vae", revision=None).half().to(device)
29
  scheduler = EulerDiscreteScheduler.from_pretrained(f"{ckpt_dir}/scheduler")
30
  unet_t2i = UNet2DConditionModel.from_pretrained(f"{ckpt_dir}/unet", revision=None).half().to(device)
31
  unet_i2i = unet_2d_condition.UNet2DConditionModel.from_pretrained(f"{ckpt_dir}/unet", revision=None).half().to(device)
32
- image_encoder = CLIPModel.from_pretrained(f'{ckpt_IPA_dir}/image_encoder', ignore_mismatched_sizes=True).to(dtype=torch.float16, device=device)
33
-
34
  ip_img_size = 336
35
- clip_processor = CLIPProcessor.from_pretrained("openai/clip-vit-base-patch32")
36
 
37
- # Stable Diffusion ํŒŒ์ดํ”„๋ผ์ธ ์„ค์ •
38
  pipe_t2i = pipeline_stable_diffusion_xl_chatglm_256.StableDiffusionXLPipeline(
39
  vae=vae,
40
- text_encoder=text_encoder,
41
- tokenizer=tokenizer,
42
- unet=unet_t2i,
43
- scheduler=scheduler,
44
  force_zeros_for_empty_prompt=False
45
  ).to(device)
46
 
@@ -51,7 +48,7 @@ pipe_i2i = pipeline_stable_diffusion_xl_chatglm_256_ipadapter.StableDiffusionXLP
51
  unet=unet_i2i,
52
  scheduler=scheduler,
53
  image_encoder=image_encoder,
54
- feature_extractor=clip_processor,
55
  force_zeros_for_empty_prompt=False
56
  ).to(device)
57
 
@@ -60,23 +57,37 @@ if hasattr(pipe_i2i.unet, 'encoder_hid_proj'):
60
 
61
  pipe_i2i.load_ip_adapter(f'{ckpt_IPA_dir}' , subfolder="", weight_name=["ip_adapter_plus_general.bin"])
62
 
63
- # CLIP ๋ชจ๋ธ ๋ฐ ํ”„๋กœ์„ธ์„œ ๋กœ๋“œ
64
- clip_model = CLIPModel.from_pretrained("openai/clip-vit-base-patch32").to(device)
65
- clip_processor = CLIPProcessor.from_pretrained("openai/clip-vit-base-patch32")
66
-
67
  MAX_SEED = np.iinfo(np.int32).max
68
  MAX_IMAGE_SIZE = 1024
69
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
70
  @spaces.GPU
71
- def infer(prompt,
72
- ip_adapter_image = None,
73
- ip_adapter_scale = 0.5,
74
- negative_prompt = "",
75
- seed = 0,
76
- randomize_seed = False,
77
- width = 1024,
78
- height = 1024,
79
- guidance_scale = 5.0,
80
  num_inference_steps = 25
81
  ):
82
  if randomize_seed:
@@ -86,15 +97,15 @@ def infer(prompt,
86
  if ip_adapter_image is None:
87
  pipe_t2i.to(device)
88
  image = pipe_t2i(
89
- prompt = prompt,
90
  negative_prompt = negative_prompt,
91
- guidance_scale = guidance_scale,
92
- num_inference_steps = num_inference_steps,
93
- width = width,
94
  height = height,
95
  generator = generator
96
- ).images[0]
97
- image.save("generated_image.jpg")
98
  return image, "generated_image.jpg"
99
  else:
100
  pipe_i2i.to(device)
@@ -104,24 +115,54 @@ def infer(prompt,
104
  image = pipe_i2i(
105
  prompt=prompt,
106
  ip_adapter_image=[ip_adapter_image],
107
- negative_prompt=negative_prompt,
108
  height=height,
109
  width=width,
110
- num_inference_steps=num_inference_steps,
111
  guidance_scale=guidance_scale,
112
  num_images_per_prompt=1,
113
  generator=generator
114
  ).images[0]
115
- image.save("generated_image.jpg")
116
  return image, "generated_image.jpg"
117
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
118
  def describe_image(image):
119
- # CPU์—์„œ ์ „์ฒ˜๋ฆฌ
120
- inputs = clip_processor(images=image, return_tensors="pt").to("cpu")
121
- with torch.no_grad():
122
- outputs = clip_model.get_image_features(**inputs).to("cpu")
123
- # ์—ฌ๊ธฐ์— ์ ์ ˆํ•œ ํ…์ŠคํŠธ ์„ค๋ช… ์ƒ์„ฑ์„ ์œ„ํ•œ ์ถ”๊ฐ€ ๋กœ์ง์ด ํ•„์š”ํ•  ์ˆ˜ ์žˆ์Œ
124
- return "์ด๋ฏธ์ง€์— ๋Œ€ํ•œ ์„ค๋ช…"
 
 
 
 
 
 
 
 
 
 
 
125
 
126
  css="""
127
  #col-left {
@@ -137,6 +178,21 @@ css="""
137
  with gr.Blocks(css=css) as Kolors:
138
  with gr.Row():
139
  with gr.Column(elem_id="col-left"):
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
140
  with gr.Row():
141
  generated_prompt = gr.Textbox(
142
  label="ํ”„๋กฌํ”„ํŠธ ์ž…๋ ฅ",
@@ -205,16 +261,24 @@ with gr.Blocks(css=css) as Kolors:
205
  result = gr.Image(label="Result", show_label=False)
206
  download_button = gr.File(label="Download Image")
207
  image_description = gr.Textbox(label="Image Description", placeholder="์ด๋ฏธ์ง€ ๋ถ„์„ ๊ฒฐ๊ณผ๊ฐ€ ์—ฌ๊ธฐ์— ํ‘œ์‹œ๋ฉ๋‹ˆ๋‹ค.", interactive=False)
 
208
 
 
 
 
 
 
 
 
209
  # ์ด๋ฏธ์ง€ ์ƒ์„ฑ ๋ฐ ๋‹ค์šด๋กœ๋“œ ํŒŒ์ผ ๊ฒฝ๋กœ ์„ค์ •
210
  run_button.click(
211
  fn=infer,
212
  inputs=[generated_prompt, ip_adapter_image, ip_adapter_scale, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps],
213
  outputs=[result, download_button]
214
  )
215
-
216
  # ์ด๋ฏธ์ง€ ์„ค๋ช… ์ƒ์„ฑ
217
- ip_adapter_image.change(
218
  fn=describe_image,
219
  inputs=[ip_adapter_image],
220
  outputs=[image_description]
 
2
  import random
3
  import torch
4
  from huggingface_hub import snapshot_download
5
+ from transformers import CLIPVisionModelWithProjection, CLIPImageProcessor
6
  from kolors.pipelines import pipeline_stable_diffusion_xl_chatglm_256_ipadapter, pipeline_stable_diffusion_xl_chatglm_256
7
  from kolors.models.modeling_chatglm import ChatGLMModel
8
  from kolors.models.tokenization_chatglm import ChatGLMTokenizer
 
10
  from diffusers import AutoencoderKL, EulerDiscreteScheduler, UNet2DConditionModel
11
  import gradio as gr
12
  import numpy as np
13
+ from huggingface_hub import InferenceClient
14
  import os
15
+ from PIL import Image
16
+ import re
17
 
18
+ # Cohere ๋ชจ๋ธ ์ดˆ๊ธฐํ™”
19
+ client = InferenceClient("CohereForAI/c4ai-command-r-plus", token=os.getenv("HF_TOKEN"))
20
 
21
+ device = "cuda"
 
 
22
  ckpt_dir = snapshot_download(repo_id="Kwai-Kolors/Kolors")
23
  ckpt_IPA_dir = snapshot_download(repo_id="Kwai-Kolors/Kolors-IP-Adapter-Plus")
24
 
 
25
  text_encoder = ChatGLMModel.from_pretrained(f'{ckpt_dir}/text_encoder', torch_dtype=torch.float16).half().to(device)
26
  tokenizer = ChatGLMTokenizer.from_pretrained(f'{ckpt_dir}/text_encoder')
27
  vae = AutoencoderKL.from_pretrained(f"{ckpt_dir}/vae", revision=None).half().to(device)
28
  scheduler = EulerDiscreteScheduler.from_pretrained(f"{ckpt_dir}/scheduler")
29
  unet_t2i = UNet2DConditionModel.from_pretrained(f"{ckpt_dir}/unet", revision=None).half().to(device)
30
  unet_i2i = unet_2d_condition.UNet2DConditionModel.from_pretrained(f"{ckpt_dir}/unet", revision=None).half().to(device)
31
+ image_encoder = CLIPVisionModelWithProjection.from_pretrained(f'{ckpt_IPA_dir}/image_encoder', ignore_mismatched_sizes=True).to(dtype=torch.float16, device=device)
 
32
  ip_img_size = 336
33
+ clip_image_processor = CLIPImageProcessor(size=ip_img_size, crop_size=ip_img_size)
34
 
 
35
  pipe_t2i = pipeline_stable_diffusion_xl_chatglm_256.StableDiffusionXLPipeline(
36
  vae=vae,
37
+ text_encoder=text_encoder,
38
+ tokenizer=tokenizer,
39
+ unet=unet_t2i,
40
+ scheduler=scheduler,
41
  force_zeros_for_empty_prompt=False
42
  ).to(device)
43
 
 
48
  unet=unet_i2i,
49
  scheduler=scheduler,
50
  image_encoder=image_encoder,
51
+ feature_extractor=clip_image_processor,
52
  force_zeros_for_empty_prompt=False
53
  ).to(device)
54
 
 
57
 
58
  pipe_i2i.load_ip_adapter(f'{ckpt_IPA_dir}' , subfolder="", weight_name=["ip_adapter_plus_general.bin"])
59
 
 
 
 
 
60
  MAX_SEED = np.iinfo(np.int32).max
61
  MAX_IMAGE_SIZE = 1024
62
 
63
+ def call_api(content, system_message, max_tokens=1000, temperature=0.7, top_p=0.95):
64
+ messages = [{"role": "system", "content": system_message}, {"role": "user", "content": content}]
65
+ response = client.chat_completion(messages, max_tokens=max_tokens, temperature=temperature, top_p=top_p)
66
+ return response.choices[0].message['content']
67
+
68
+ def generate_prompt(korean_prompt):
69
+ system_message = """
70
+ Given the following description in Korean,
71
+ translate and generate a concise English prompt suitable for a Stable Diffusion model.
72
+ The prompt should be focused, descriptive,
73
+ and contain specific keywords or phrases that will help guide the image generation process.
74
+ Use simple and descriptive language, avoiding unnecessary words.
75
+ Ensure the output is in English and follows the format typically used in Stable Diffusion prompts.
76
+ The description is: [Insert Korean description here]
77
+ """
78
+ optimized_prompt = call_api(korean_prompt, system_message)
79
+ return optimized_prompt # ์ตœ์ ํ™”๋œ ํ”„๋กฌํ”„ํŠธ ๋ฐ˜ํ™˜
80
+
81
  @spaces.GPU
82
+ def infer(prompt,
83
+ ip_adapter_image = None,
84
+ ip_adapter_scale = 0.5,
85
+ negative_prompt = "",
86
+ seed = 0,
87
+ randomize_seed = False,
88
+ width = 1024,
89
+ height = 1024,
90
+ guidance_scale = 5.0,
91
  num_inference_steps = 25
92
  ):
93
  if randomize_seed:
 
97
  if ip_adapter_image is None:
98
  pipe_t2i.to(device)
99
  image = pipe_t2i(
100
+ prompt = prompt,
101
  negative_prompt = negative_prompt,
102
+ guidance_scale = guidance_scale,
103
+ num_inference_steps = num_inference_steps,
104
+ width = width,
105
  height = height,
106
  generator = generator
107
+ ).images[0]
108
+ image.save("generated_image.jpg") # ํŒŒ์ผ ํ™•์žฅ์ž๋ฅผ .jpg๋กœ ๋ณ€๊ฒฝ
109
  return image, "generated_image.jpg"
110
  else:
111
  pipe_i2i.to(device)
 
115
  image = pipe_i2i(
116
  prompt=prompt,
117
  ip_adapter_image=[ip_adapter_image],
118
+ negative_prompt=negative_prompt,
119
  height=height,
120
  width=width,
121
+ num_inference_steps=num_inference_steps,
122
  guidance_scale=guidance_scale,
123
  num_images_per_prompt=1,
124
  generator=generator
125
  ).images[0]
126
+ image.save("generated_image.jpg") # ํŒŒ์ผ ํ™•์žฅ์ž๋ฅผ .jpg๋กœ ๋ณ€๊ฒฝ
127
  return image, "generated_image.jpg"
128
 
129
+ # ์‚ฌ์ง„ ์„ค๋ช… ๊ธฐ๋Šฅ ์ถ”๊ฐ€๋ฅผ ์œ„ํ•œ ์ฐธ์กฐ ์ฝ”๋“œ ํ†ตํ•ฉ
130
+ from transformers import AutoProcessor, AutoModelForCausalLM
131
+
132
+ model = AutoModelForCausalLM.from_pretrained('gokaygokay/Florence-2-SD3-Captioner', trust_remote_code=True).to("cuda").eval()
133
+ processor = AutoProcessor.from_pretrained('gokaygokay/Florence-2-SD3-Captioner', trust_remote_code=True)
134
+
135
+ def modify_caption(caption: str) -> str:
136
+ prefix_substrings = [
137
+ ('captured from ', ''),
138
+ ('captured at ', '')
139
+ ]
140
+ pattern = '|'.join([re.escape(opening) for opening, _ in prefix_substrings])
141
+ replacers = {opening.lower(): replacer for opening, replacer in prefix_substrings}
142
+ def replace_fn(match):
143
+ return replacers[match.group(0).lower()]
144
+ modified_caption = re.sub(pattern, replace_fn, caption, count=1, flags=re.IGNORECASE)
145
+ return modified_caption if modified_caption != caption else caption
146
+
147
+ @spaces.GPU
148
  def describe_image(image):
149
+ image = Image.fromarray(image)
150
+ task_prompt = "<DESCRIPTION>"
151
+ prompt = task_prompt + "Describe this image in great detail."
152
+
153
+ if image.mode != "RGB":
154
+ image = image.convert("RGB")
155
+
156
+ inputs = processor(text=prompt, images=image, return_tensors="pt").to("cuda")
157
+ generated_ids = model.generate(
158
+ input_ids=inputs["input_ids"],
159
+ pixel_values=inputs["pixel_values"],
160
+ max_new_tokens=1024,
161
+ num_beams=3
162
+ )
163
+ generated_text = processor.batch_decode(generated_ids, skip_special_tokens=False)[0]
164
+ parsed_answer = processor.post_process_generation(generated_text, task=task_prompt, image_size=(image.width, image.height))
165
+ return modify_caption(parsed_answer["<DESCRIPTION>"])
166
 
167
  css="""
168
  #col-left {
 
178
  with gr.Blocks(css=css) as Kolors:
179
  with gr.Row():
180
  with gr.Column(elem_id="col-left"):
181
+ with gr.Row():
182
+ korean_prompt = gr.Textbox(
183
+ label="ํ•œ๊ตญ์–ด ํ”„๋กฌํ”„ํŠธ ์ž…๋ ฅ",
184
+ placeholder="ํ•œ๊ตญ์–ด๋กœ ์›ํ•˜๋Š” ํ”„๋กฌํ”„ํŠธ๋ฅผ ์ž…๋ ฅํ•˜์„ธ์š”",
185
+ lines=2
186
+ )
187
+ with gr.Row():
188
+ generate_prompt_button = gr.Button("Generate Prompt")
189
+ with gr.Row():
190
+ optimized_prompt = gr.Textbox(
191
+ label="์ตœ์ ํ™”๋œ ํ”„๋กฌํ”„ํŠธ ์ƒ์„ฑ",
192
+ placeholder=" ",
193
+ lines=2,
194
+ interactive=False
195
+ )
196
  with gr.Row():
197
  generated_prompt = gr.Textbox(
198
  label="ํ”„๋กฌํ”„ํŠธ ์ž…๋ ฅ",
 
261
  result = gr.Image(label="Result", show_label=False)
262
  download_button = gr.File(label="Download Image")
263
  image_description = gr.Textbox(label="Image Description", placeholder="์ด๋ฏธ์ง€ ๋ถ„์„ ๊ฒฐ๊ณผ๊ฐ€ ์—ฌ๊ธฐ์— ํ‘œ์‹œ๋ฉ๋‹ˆ๋‹ค.", interactive=False)
264
+ analyze_button = gr.Button("Analyze Image")
265
 
266
+ # ์ตœ์ ํ™”๋œ ํ”„๋กฌํ”„ํŠธ ์ƒ์„ฑ ๋ฐ ๊ฒฐ๊ณผ ํ‘œ์‹œ
267
+ generate_prompt_button.click(
268
+ fn=generate_prompt,
269
+ inputs=[korean_prompt],
270
+ outputs=[optimized_prompt]
271
+ )
272
+
273
  # ์ด๋ฏธ์ง€ ์ƒ์„ฑ ๋ฐ ๋‹ค์šด๋กœ๋“œ ํŒŒ์ผ ๊ฒฝ๋กœ ์„ค์ •
274
  run_button.click(
275
  fn=infer,
276
  inputs=[generated_prompt, ip_adapter_image, ip_adapter_scale, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps],
277
  outputs=[result, download_button]
278
  )
279
+
280
  # ์ด๋ฏธ์ง€ ์„ค๋ช… ์ƒ์„ฑ
281
+ analyze_button.click(
282
  fn=describe_image,
283
  inputs=[ip_adapter_image],
284
  outputs=[image_description]