|
import os
|
|
import uuid
|
|
import joblib
|
|
import json
|
|
|
|
import gradio as gr
|
|
import pandas as pd
|
|
|
|
from huggingface_hub import CommitScheduler
|
|
from pathlib import Path
|
|
|
|
log_file = Path("logs/") / f"data_{uuid.uuid4()}.json"
|
|
log_folder = log_file.parent
|
|
|
|
scheduler = CommitScheduler(
|
|
repo_id="term-deposit-logs",
|
|
repo_type="dataset",
|
|
folder_path=log_folder,
|
|
path_in_repo="data",
|
|
every=2
|
|
)
|
|
|
|
term_deposit_predictor = joblib.load('model.joblib')
|
|
|
|
age_input = gr.Number(label="Age")
|
|
duration_input = gr.Number(label='Duration(Sec)')
|
|
cc_contact_freq_input = gr.Number(label='CC Contact Freq')
|
|
days_since_pc_input = gr.Number(label='Days Since PC')
|
|
pc_contact_freq_input = gr.Number(label='Pc Contact Freq')
|
|
job_input = gr.Dropdown(['admin.', 'blue-collar', 'technician', 'services', 'management',
|
|
'retired', 'entrepreneur', 'self-employed', 'housemaid', 'unemployed',
|
|
'student', 'unknown'],label="Job")
|
|
marital_input = gr.Dropdown(['married', 'single', 'divorced', 'unknown'],label='Marital Status')
|
|
education_input = gr.Dropdown(['experience', 'university degree', 'high school', 'professional.course',
|
|
'Others', 'illiterate'],label='Education')
|
|
defaulter_input = gr.Dropdown(['no', 'unknown', 'yes'],label='Defaulter')
|
|
home_loan_input = gr.Dropdown(['yes', 'no', 'unknown'],label='Home Loan')
|
|
personal_loan_input = gr.Dropdown(['yes', 'no', 'unknown'],label='Personal Loan')
|
|
communication_type_input = gr.Dropdown(['cellular', 'telephone'],label='Communication Type')
|
|
last_contacted_input = gr.Dropdown(['may', 'jul', 'aug', 'jun', 'nov', 'apr', 'oct', 'mar', 'sep', 'dec'],label='Last Contacted')
|
|
day_of_week_input = gr.Dropdown(['thu', 'mon', 'wed', 'tue', 'fri'],label='Day of Week')
|
|
pc_outcome_input = gr.Dropdown(['nonexistent', 'failure', 'success'], label='PC Outcome')
|
|
|
|
|
|
model_output = gr.Label(label="Subscribed")
|
|
|
|
def predict_term_deposit(age, duration, cc_contact_freq, days_since_pc, pc_contact_freq, job, marital_status, education,
|
|
defaulter, home_loan, personal_loan, communication_type, last_contacted,
|
|
day_of_week, pc_outcome):
|
|
sample = {
|
|
'Age': age,
|
|
'Duration(Sec)': duration,
|
|
'CC Contact Freq': cc_contact_freq,
|
|
'Days Since PC': days_since_pc,
|
|
'PC Contact Freq': pc_contact_freq,
|
|
'Job': job,
|
|
'Marital Status': marital_status,
|
|
'Education': education,
|
|
'Defaulter': defaulter,
|
|
'Home Loan': home_loan,
|
|
'Personal Loan': personal_loan,
|
|
'Communication Type': communication_type,
|
|
'Last Contacted': last_contacted,
|
|
'Day of Week': day_of_week,
|
|
'PC Outcome': pc_outcome,
|
|
}
|
|
data_point = pd.DataFrame([sample])
|
|
prediction = term_deposit_predictor.predict(data_point).tolist()
|
|
|
|
with scheduler.lock:
|
|
with log_file.open("a") as f:
|
|
f.write(json.dumps(
|
|
{
|
|
'Age': age,
|
|
'Duration(Sec)': duration,
|
|
'CC Contact Freq': cc_contact_freq,
|
|
'Days Since PC': days_since_pc,
|
|
'PC Contact Freq': pc_contact_freq,
|
|
'Job': job,
|
|
'Marital Status': marital_status,
|
|
'Education': education,
|
|
'Defaulter': defaulter,
|
|
'Home Loan': home_loan,
|
|
'Personal Loan': personal_loan,
|
|
'Communication Type': communication_type,
|
|
'Last Month Contacted': last_contacted,
|
|
'Day of Week': day_of_week,
|
|
'PC Outcome': pc_outcome,
|
|
'prediction': prediction[0]
|
|
}
|
|
))
|
|
f.write("\n")
|
|
|
|
return prediction[0]
|
|
|
|
demo = gr.Interface(
|
|
fn=predict_term_deposit,
|
|
inputs=[age_input,
|
|
duration_input,
|
|
cc_contact_freq_input,
|
|
days_since_pc_input,
|
|
pc_contact_freq_input,
|
|
job_input,
|
|
marital_input,
|
|
education_input,
|
|
defaulter_input,
|
|
home_loan_input,
|
|
personal_loan_input,
|
|
communication_type_input,
|
|
last_contacted_input,
|
|
day_of_week_input,
|
|
pc_outcome_input],
|
|
outputs=model_output,
|
|
title="Term Deposit Prediction",
|
|
description="This API allows you to predict the person who are going to likely subscribe the term deposit",
|
|
allow_flagging="auto",
|
|
concurrency_limit=8
|
|
)
|
|
|
|
demo.queue()
|
|
demo.launch(share=False) |