Spaces:
Running
Running
import glob | |
import os | |
import random | |
from multiprocessing import Manager | |
from typing import List, Tuple | |
import numpy as np | |
import torch | |
from torch.utils.data import Dataset | |
class WaveGradDataset(Dataset): | |
""" | |
WaveGrad Dataset searchs for all the wav files under root path | |
and converts them to acoustic features on the fly and returns | |
random segments of (audio, feature) couples. | |
""" | |
def __init__( | |
self, | |
ap, | |
items, | |
seq_len, | |
hop_len, | |
pad_short, | |
conv_pad=2, | |
is_training=True, | |
return_segments=True, | |
use_noise_augment=False, | |
use_cache=False, | |
verbose=False, | |
): | |
super().__init__() | |
self.ap = ap | |
self.item_list = items | |
self.seq_len = seq_len if return_segments else None | |
self.hop_len = hop_len | |
self.pad_short = pad_short | |
self.conv_pad = conv_pad | |
self.is_training = is_training | |
self.return_segments = return_segments | |
self.use_cache = use_cache | |
self.use_noise_augment = use_noise_augment | |
self.verbose = verbose | |
if return_segments: | |
assert seq_len % hop_len == 0, " [!] seq_len has to be a multiple of hop_len." | |
self.feat_frame_len = seq_len // hop_len + (2 * conv_pad) | |
# cache acoustic features | |
if use_cache: | |
self.create_feature_cache() | |
def create_feature_cache(self): | |
self.manager = Manager() | |
self.cache = self.manager.list() | |
self.cache += [None for _ in range(len(self.item_list))] | |
def find_wav_files(path): | |
return glob.glob(os.path.join(path, "**", "*.wav"), recursive=True) | |
def __len__(self): | |
return len(self.item_list) | |
def __getitem__(self, idx): | |
item = self.load_item(idx) | |
return item | |
def load_test_samples(self, num_samples: int) -> List[Tuple]: | |
"""Return test samples. | |
Args: | |
num_samples (int): Number of samples to return. | |
Returns: | |
List[Tuple]: melspectorgram and audio. | |
Shapes: | |
- melspectrogram (Tensor): :math:`[C, T]` | |
- audio (Tensor): :math:`[T_audio]` | |
""" | |
samples = [] | |
return_segments = self.return_segments | |
self.return_segments = False | |
for idx in range(num_samples): | |
mel, audio = self.load_item(idx) | |
samples.append([mel, audio]) | |
self.return_segments = return_segments | |
return samples | |
def load_item(self, idx): | |
"""load (audio, feat) couple""" | |
# compute features from wav | |
wavpath = self.item_list[idx] | |
if self.use_cache and self.cache[idx] is not None: | |
audio = self.cache[idx] | |
else: | |
audio = self.ap.load_wav(wavpath) | |
if self.return_segments: | |
# correct audio length wrt segment length | |
if audio.shape[-1] < self.seq_len + self.pad_short: | |
audio = np.pad( | |
audio, (0, self.seq_len + self.pad_short - len(audio)), mode="constant", constant_values=0.0 | |
) | |
assert ( | |
audio.shape[-1] >= self.seq_len + self.pad_short | |
), f"{audio.shape[-1]} vs {self.seq_len + self.pad_short}" | |
# correct the audio length wrt hop length | |
p = (audio.shape[-1] // self.hop_len + 1) * self.hop_len - audio.shape[-1] | |
audio = np.pad(audio, (0, p), mode="constant", constant_values=0.0) | |
if self.use_cache: | |
self.cache[idx] = audio | |
if self.return_segments: | |
max_start = len(audio) - self.seq_len | |
start = random.randint(0, max_start) | |
end = start + self.seq_len | |
audio = audio[start:end] | |
if self.use_noise_augment and self.is_training and self.return_segments: | |
audio = audio + (1 / 32768) * torch.randn_like(audio) | |
mel = self.ap.melspectrogram(audio) | |
mel = mel[..., :-1] # ignore the padding | |
audio = torch.from_numpy(audio).float() | |
mel = torch.from_numpy(mel).float().squeeze(0) | |
return (mel, audio) | |
def collate_full_clips(batch): | |
"""This is used in tune_wavegrad.py. | |
It pads sequences to the max length.""" | |
max_mel_length = max([b[0].shape[1] for b in batch]) if len(batch) > 1 else batch[0][0].shape[1] | |
max_audio_length = max([b[1].shape[0] for b in batch]) if len(batch) > 1 else batch[0][1].shape[0] | |
mels = torch.zeros([len(batch), batch[0][0].shape[0], max_mel_length]) | |
audios = torch.zeros([len(batch), max_audio_length]) | |
for idx, b in enumerate(batch): | |
mel = b[0] | |
audio = b[1] | |
mels[idx, :, : mel.shape[1]] = mel | |
audios[idx, : audio.shape[0]] = audio | |
return mels, audios | |