Spaces:
Running
Running
import torch | |
import torch.nn as nn | |
import torch.nn.functional as F | |
from utils.display import * | |
from utils.dsp import * | |
class WaveRNN(nn.Module) : | |
def __init__(self, hidden_size=896, quantisation=256) : | |
super(WaveRNN, self).__init__() | |
self.hidden_size = hidden_size | |
self.split_size = hidden_size // 2 | |
# The main matmul | |
self.R = nn.Linear(self.hidden_size, 3 * self.hidden_size, bias=False) | |
# Output fc layers | |
self.O1 = nn.Linear(self.split_size, self.split_size) | |
self.O2 = nn.Linear(self.split_size, quantisation) | |
self.O3 = nn.Linear(self.split_size, self.split_size) | |
self.O4 = nn.Linear(self.split_size, quantisation) | |
# Input fc layers | |
self.I_coarse = nn.Linear(2, 3 * self.split_size, bias=False) | |
self.I_fine = nn.Linear(3, 3 * self.split_size, bias=False) | |
# biases for the gates | |
self.bias_u = nn.Parameter(torch.zeros(self.hidden_size)) | |
self.bias_r = nn.Parameter(torch.zeros(self.hidden_size)) | |
self.bias_e = nn.Parameter(torch.zeros(self.hidden_size)) | |
# display num params | |
self.num_params() | |
def forward(self, prev_y, prev_hidden, current_coarse) : | |
# Main matmul - the projection is split 3 ways | |
R_hidden = self.R(prev_hidden) | |
R_u, R_r, R_e, = torch.split(R_hidden, self.hidden_size, dim=1) | |
# Project the prev input | |
coarse_input_proj = self.I_coarse(prev_y) | |
I_coarse_u, I_coarse_r, I_coarse_e = \ | |
torch.split(coarse_input_proj, self.split_size, dim=1) | |
# Project the prev input and current coarse sample | |
fine_input = torch.cat([prev_y, current_coarse], dim=1) | |
fine_input_proj = self.I_fine(fine_input) | |
I_fine_u, I_fine_r, I_fine_e = \ | |
torch.split(fine_input_proj, self.split_size, dim=1) | |
# concatenate for the gates | |
I_u = torch.cat([I_coarse_u, I_fine_u], dim=1) | |
I_r = torch.cat([I_coarse_r, I_fine_r], dim=1) | |
I_e = torch.cat([I_coarse_e, I_fine_e], dim=1) | |
# Compute all gates for coarse and fine | |
u = F.sigmoid(R_u + I_u + self.bias_u) | |
r = F.sigmoid(R_r + I_r + self.bias_r) | |
e = F.tanh(r * R_e + I_e + self.bias_e) | |
hidden = u * prev_hidden + (1. - u) * e | |
# Split the hidden state | |
hidden_coarse, hidden_fine = torch.split(hidden, self.split_size, dim=1) | |
# Compute outputs | |
out_coarse = self.O2(F.relu(self.O1(hidden_coarse))) | |
out_fine = self.O4(F.relu(self.O3(hidden_fine))) | |
return out_coarse, out_fine, hidden | |
def generate(self, seq_len): | |
with torch.no_grad(): | |
# First split up the biases for the gates | |
b_coarse_u, b_fine_u = torch.split(self.bias_u, self.split_size) | |
b_coarse_r, b_fine_r = torch.split(self.bias_r, self.split_size) | |
b_coarse_e, b_fine_e = torch.split(self.bias_e, self.split_size) | |
# Lists for the two output seqs | |
c_outputs, f_outputs = [], [] | |
# Some initial inputs | |
out_coarse = torch.LongTensor([0]).cuda() | |
out_fine = torch.LongTensor([0]).cuda() | |
# We'll meed a hidden state | |
hidden = self.init_hidden() | |
# Need a clock for display | |
start = time.time() | |
# Loop for generation | |
for i in range(seq_len) : | |
# Split into two hidden states | |
hidden_coarse, hidden_fine = \ | |
torch.split(hidden, self.split_size, dim=1) | |
# Scale and concat previous predictions | |
out_coarse = out_coarse.unsqueeze(0).float() / 127.5 - 1. | |
out_fine = out_fine.unsqueeze(0).float() / 127.5 - 1. | |
prev_outputs = torch.cat([out_coarse, out_fine], dim=1) | |
# Project input | |
coarse_input_proj = self.I_coarse(prev_outputs) | |
I_coarse_u, I_coarse_r, I_coarse_e = \ | |
torch.split(coarse_input_proj, self.split_size, dim=1) | |
# Project hidden state and split 6 ways | |
R_hidden = self.R(hidden) | |
R_coarse_u , R_fine_u, \ | |
R_coarse_r, R_fine_r, \ | |
R_coarse_e, R_fine_e = torch.split(R_hidden, self.split_size, dim=1) | |
# Compute the coarse gates | |
u = F.sigmoid(R_coarse_u + I_coarse_u + b_coarse_u) | |
r = F.sigmoid(R_coarse_r + I_coarse_r + b_coarse_r) | |
e = F.tanh(r * R_coarse_e + I_coarse_e + b_coarse_e) | |
hidden_coarse = u * hidden_coarse + (1. - u) * e | |
# Compute the coarse output | |
out_coarse = self.O2(F.relu(self.O1(hidden_coarse))) | |
posterior = F.softmax(out_coarse, dim=1) | |
distrib = torch.distributions.Categorical(posterior) | |
out_coarse = distrib.sample() | |
c_outputs.append(out_coarse) | |
# Project the [prev outputs and predicted coarse sample] | |
coarse_pred = out_coarse.float() / 127.5 - 1. | |
fine_input = torch.cat([prev_outputs, coarse_pred.unsqueeze(0)], dim=1) | |
fine_input_proj = self.I_fine(fine_input) | |
I_fine_u, I_fine_r, I_fine_e = \ | |
torch.split(fine_input_proj, self.split_size, dim=1) | |
# Compute the fine gates | |
u = F.sigmoid(R_fine_u + I_fine_u + b_fine_u) | |
r = F.sigmoid(R_fine_r + I_fine_r + b_fine_r) | |
e = F.tanh(r * R_fine_e + I_fine_e + b_fine_e) | |
hidden_fine = u * hidden_fine + (1. - u) * e | |
# Compute the fine output | |
out_fine = self.O4(F.relu(self.O3(hidden_fine))) | |
posterior = F.softmax(out_fine, dim=1) | |
distrib = torch.distributions.Categorical(posterior) | |
out_fine = distrib.sample() | |
f_outputs.append(out_fine) | |
# Put the hidden state back together | |
hidden = torch.cat([hidden_coarse, hidden_fine], dim=1) | |
# Display progress | |
speed = (i + 1) / (time.time() - start) | |
stream('Gen: %i/%i -- Speed: %i', (i + 1, seq_len, speed)) | |
coarse = torch.stack(c_outputs).squeeze(1).cpu().data.numpy() | |
fine = torch.stack(f_outputs).squeeze(1).cpu().data.numpy() | |
output = combine_signal(coarse, fine) | |
return output, coarse, fine | |
def init_hidden(self, batch_size=1) : | |
return torch.zeros(batch_size, self.hidden_size).cuda() | |
def num_params(self) : | |
parameters = filter(lambda p: p.requires_grad, self.parameters()) | |
parameters = sum([np.prod(p.size()) for p in parameters]) / 1_000_000 | |
print('Trainable Parameters: %.3f million' % parameters) |