Spaces:
Running
Running
srivatsavdamaraju
commited on
Update app.py
Browse files
app.py
CHANGED
@@ -1,57 +1,55 @@
|
|
1 |
-
import
|
2 |
-
import streamlit as st
|
3 |
import numpy as np
|
4 |
from PIL import Image
|
5 |
-
import
|
6 |
-
|
7 |
-
|
8 |
-
face_cascade = cv2.CascadeClassifier(cv2.data.haarcascades + 'haarcascade_frontalface_default.xml')
|
9 |
-
|
10 |
-
# Define a function to detect faces in a frame
|
11 |
-
def detect_faces(frame):
|
12 |
-
# Convert the frame to grayscale (Haar Cascade works on grayscale images)
|
13 |
-
gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
|
14 |
-
|
15 |
-
# Detect faces in the image
|
16 |
-
faces = face_cascade.detectMultiScale(gray, scaleFactor=1.1, minNeighbors=5, minSize=(30, 30))
|
17 |
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
|
22 |
-
|
|
|
|
|
23 |
|
24 |
-
#
|
25 |
-
|
|
|
26 |
|
27 |
-
#
|
28 |
-
|
29 |
|
30 |
-
#
|
31 |
-
|
32 |
|
33 |
-
if not
|
34 |
-
|
35 |
-
|
36 |
-
# Start capturing video frames
|
37 |
-
while True:
|
38 |
-
ret, frame = cap.read()
|
39 |
|
40 |
-
|
41 |
-
|
42 |
-
break
|
43 |
|
44 |
-
|
45 |
-
|
|
|
|
|
46 |
|
47 |
-
|
48 |
-
|
|
|
|
|
|
|
|
|
|
|
49 |
|
50 |
-
|
51 |
-
|
52 |
|
53 |
-
|
54 |
-
|
|
|
55 |
|
56 |
-
#
|
57 |
-
|
|
|
|
1 |
+
import torch
|
|
|
2 |
import numpy as np
|
3 |
from PIL import Image
|
4 |
+
from transformers import AutoImageProcessor, AutoModelForDepthEstimation
|
5 |
+
import streamlit as st
|
6 |
+
import cv2
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
7 |
|
8 |
+
# Load model and image processor
|
9 |
+
image_processor = AutoImageProcessor.from_pretrained("depth-anything/Depth-Anything-V2-Small-hf")
|
10 |
+
model = AutoModelForDepthEstimation.from_pretrained("depth-anything/Depth-Anything-V2-Small-hf")
|
11 |
|
12 |
+
# Set the device for model (CUDA if available)
|
13 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
14 |
+
model.to(device)
|
15 |
|
16 |
+
# Use FP16 if available (half precision for speed)
|
17 |
+
if torch.cuda.is_available():
|
18 |
+
model = model.half()
|
19 |
|
20 |
+
# Streamlit App
|
21 |
+
st.title("Depth Estimation from Webcam")
|
22 |
|
23 |
+
# Capture image from webcam
|
24 |
+
image_data = st.camera_input("Capture an image")
|
25 |
|
26 |
+
if image_data is not None:
|
27 |
+
# Convert the captured image data to a PIL image
|
28 |
+
image = Image.open(image_data)
|
|
|
|
|
|
|
29 |
|
30 |
+
# Prepare the image for the model
|
31 |
+
inputs = image_processor(images=image, return_tensors="pt").to(device)
|
|
|
32 |
|
33 |
+
# Model inference (no gradients needed)
|
34 |
+
with torch.no_grad():
|
35 |
+
outputs = model(**inputs)
|
36 |
+
predicted_depth = outputs.predicted_depth
|
37 |
|
38 |
+
# Interpolate depth map to match the image's dimensions
|
39 |
+
prediction = torch.nn.functional.interpolate(
|
40 |
+
predicted_depth.unsqueeze(1),
|
41 |
+
size=(image.height, image.width), # Match the image's dimensions
|
42 |
+
mode="bicubic",
|
43 |
+
align_corners=False,
|
44 |
+
)
|
45 |
|
46 |
+
# Convert depth map to numpy for visualization
|
47 |
+
depth_map = prediction.squeeze().cpu().numpy()
|
48 |
|
49 |
+
# Normalize depth map for display (visualization purposes)
|
50 |
+
depth_map_normalized = np.uint8(depth_map / np.max(depth_map) * 255)
|
51 |
+
depth_map_colored = cv2.applyColorMap(depth_map_normalized, cv2.COLORMAP_JET)
|
52 |
|
53 |
+
# Display the original image and the depth map in Streamlit
|
54 |
+
st.image(image, caption="Captured Image", use_column_width=True)
|
55 |
+
st.image(depth_map_colored, caption="Depth Map", use_column_width=True)
|