emotune-api / app.py
srisuriyas's picture
Update app.py
e67d2cf verified
from fastapi import FastAPI, File, UploadFile
from fastapi.middleware.cors import CORSMiddleware
from transformers import pipeline
import uvicorn
import tempfile
import torchaudio
app = FastAPI()
# Allow CORS
app.add_middleware(
CORSMiddleware,
allow_origins=["*"],
allow_methods=["*"],
allow_headers=["*"],
)
# Load model
pipe = pipeline("audio-classification", model="superb/wav2vec2-base-superb-er")
@app.post("/predict")
async def predict(file: UploadFile = File(...)):
try:
# Save uploaded file to a temp file
with tempfile.NamedTemporaryFile(delete=False, suffix=".wav") as tmp:
tmp.write(await file.read())
tmp_path = tmp.name
# Load and preprocess audio
waveform, sample_rate = torchaudio.load(tmp_path)
# Get prediction
result = pipe(tmp_path)
# Get top prediction label
top_emotion = result[0]["label"].lower()
return {"emotion": top_emotion}
except Exception as e:
return {"error": str(e)}