srinuksv commited on
Commit
1be4a62
·
verified ·
1 Parent(s): 4a820b3

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +5 -5
app.py CHANGED
@@ -2,12 +2,12 @@
2
  from gradio import Interface, Image, Label
3
  import tensorflow as tf
4
  # Load your TensorFlow model
5
- model = tf.keras.models.load_model("a.h5")
6
 
7
  # Define your class names if needed
8
  class_names = ['Asian-Green-Bee-Eater', 'Brown-Headed-Barbet', 'Cattle-Egret', 'Common-Kingfisher', 'Common-Myna', 'House-Crow', 'Indian-Grey-Hornbill', 'Indian-Peacock', 'Indian-Roller', 'White-Breasted-Kingfisher']
9
 
10
-
11
  # Function to make predictions
12
  def classify_image(image):
13
  # Preprocess the image
@@ -15,7 +15,7 @@ def classify_image(image):
15
  img = tf.expand_dims(img, 0) # Add batch dimension
16
  # Make prediction
17
  prediction = model.predict(img)
18
- predicted_class = class_names[prediction.argmax()]
19
  return predicted_class
20
 
21
  # Gradio interface
@@ -24,5 +24,5 @@ label = Label()
24
 
25
  # Create interface
26
  interface = Interface(classify_image, image, label,
27
- title="Bird Species Classification",
28
- description="Upload an image of a bird to classify its species.").launch()
 
2
  from gradio import Interface, Image, Label
3
  import tensorflow as tf
4
  # Load your TensorFlow model
5
+ model = tf.keras.models.load_model("traffic.h5")
6
 
7
  # Define your class names if needed
8
  class_names = ['Asian-Green-Bee-Eater', 'Brown-Headed-Barbet', 'Cattle-Egret', 'Common-Kingfisher', 'Common-Myna', 'House-Crow', 'Indian-Grey-Hornbill', 'Indian-Peacock', 'Indian-Roller', 'White-Breasted-Kingfisher']
9
 
10
+ Class_names=['15 kmph', '18', '19', '30 kmph', '4 weehler', '40 kmph', '5 kmp only', '50 kmph', '51', '52', '53', '56', '57', '60 kmph', '70 kmph', '8', '80 kmph', '9', 'bicycle', 'chemical caution', 'cycle lane', 'dead end', 'go a ahead', 'home zone', 'horn', 'left dent curve', 'left service road', 'no 4-wheeler', 'no entry', 'no horn', 'no left turn', 'no over cross', 'no right and left turn', 'no right turn', 'no stopping and standing', 'no u-turn', 'proceed straight or turn right', 'railway gate', 'railway station', 'right service road', 'right v-dent curve', 'ring road', 'school zone', 'series of bends', 'side road left', 'side road right', 'sidewalk intersection', 'sland', 'traffic lights', 'turn left', 'turn right', 'turn right or left', 'u-turn', 'uphill', 'v-cuts', 'working area', 'zebra-crossing']
11
  # Function to make predictions
12
  def classify_image(image):
13
  # Preprocess the image
 
15
  img = tf.expand_dims(img, 0) # Add batch dimension
16
  # Make prediction
17
  prediction = model.predict(img)
18
+ predicted_class = Class_names[prediction.argmax()]
19
  return predicted_class
20
 
21
  # Gradio interface
 
24
 
25
  # Create interface
26
  interface = Interface(classify_image, image, label,
27
+ title="traffic sign detection ",
28
+ description="Upload an image of a traffic sign to classify its sign. ").launch()