Spaces:
Sleeping
Sleeping
| import cv2 | |
| import albumentations as A | |
| from albumentations.pytorch import ToTensorV2 | |
| # import torchvision.transforms as transforms | |
| norm_mean=(0.4914, 0.4822, 0.4465) | |
| norm_std=(0.2023, 0.1994, 0.2010) | |
| train_transforms = A.Compose( | |
| [ | |
| A.Sequential([ | |
| A.PadIfNeeded( | |
| min_height=40, | |
| min_width=40, | |
| border_mode=cv2.BORDER_CONSTANT, | |
| value=(norm_mean[0]*255, norm_mean[1]*255, norm_mean[2]*255) | |
| ), | |
| A.RandomCrop( | |
| height=32, | |
| width=32 | |
| ) | |
| ], p=1), | |
| A.CoarseDropout( | |
| max_holes=2, | |
| max_height=16, | |
| max_width=16, | |
| min_holes=1, | |
| min_height=8, | |
| min_width=8, | |
| fill_value=tuple((x * 255.0 for x in norm_mean)), | |
| p=0.8, | |
| ), | |
| A.Normalize(norm_mean, norm_std), | |
| ToTensorV2() | |
| ] | |
| ) | |
| test_transforms = A.Compose( | |
| [ | |
| A.Normalize(norm_mean, norm_std, always_apply=True), | |
| ToTensorV2() | |
| ] | |
| ) |