srijansengupta commited on
Commit
2268486
·
verified ·
1 Parent(s): 2dfa44e

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +38 -60
app.py CHANGED
@@ -1,63 +1,41 @@
1
- import gradio as gr
2
- from huggingface_hub import InferenceClient
3
-
4
- """
5
- For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
6
- """
7
- client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
8
-
9
-
10
- def respond(
11
- message,
12
- history: list[tuple[str, str]],
13
- system_message,
14
- max_tokens,
15
- temperature,
16
- top_p,
17
- ):
18
- messages = [{"role": "system", "content": system_message}]
19
-
20
- for val in history:
21
- if val[0]:
22
- messages.append({"role": "user", "content": val[0]})
23
- if val[1]:
24
- messages.append({"role": "assistant", "content": val[1]})
25
-
26
- messages.append({"role": "user", "content": message})
27
-
28
- response = ""
29
-
30
- for message in client.chat_completion(
31
- messages,
32
- max_tokens=max_tokens,
33
- stream=True,
34
- temperature=temperature,
35
- top_p=top_p,
36
- ):
37
- token = message.choices[0].delta.content
38
-
39
- response += token
40
- yield response
41
-
42
- """
43
- For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
44
- """
45
- demo = gr.ChatInterface(
46
- respond,
47
- additional_inputs=[
48
- gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
49
- gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
50
- gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
51
- gr.Slider(
52
- minimum=0.1,
53
- maximum=1.0,
54
- value=0.95,
55
- step=0.05,
56
- label="Top-p (nucleus sampling)",
57
- ),
58
- ],
59
  )
 
60
 
 
 
 
 
61
 
62
- if __name__ == "__main__":
63
- demo.launch()
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from transformers import AutoModelForCausalLM, AutoTokenizer
2
+ import os
3
+
4
+ model = AutoModelForCausalLM.from_pretrained(
5
+ "Qwen/CodeQwen1.5-7B-Chat",
6
+ torch_dtype="auto",
7
+ device_map="auto",
8
+ token=hf_token
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9
  )
10
+ tokenizer = AutoTokenizer.from_pretrained("Qwen/CodeQwen1.5-7B-Chat")
11
 
12
+ messages = [
13
+ {"role": "system", "content": "You are a helpful assistant."},
14
+ ]
15
+ import gradio as gr
16
 
17
+ def greet(prompt):
18
+ messages.append({"role": "user", "content": prompt})
19
+ text = tokenizer.apply_chat_template(
20
+ messages,
21
+ tokenize=False,
22
+ add_generation_prompt=True
23
+ )
24
+ model_inputs = tokenizer([text], return_tensors="pt")
25
+
26
+ generated_ids = model.generate(
27
+ model_inputs.input_ids,
28
+ max_new_tokens=512
29
+ )
30
+ generated_ids = [
31
+ output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids)
32
+ ]
33
+
34
+ response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0].text
35
+
36
+ messages.append({"role": "bot", "content": response})
37
+
38
+ return response
39
+
40
+ demo = gr.Interface(fn=greet, inputs="text", outputs="text")
41
+ demo.launch(share=True)