Update app.py
Browse files
app.py
CHANGED
|
@@ -1,84 +1,90 @@
|
|
| 1 |
-
import torch
|
| 2 |
-
import gradio as gr
|
| 3 |
-
from transformers import pipeline, AutoTokenizer, AutoModelForTokenClassification
|
| 4 |
-
from rapidfuzz import process
|
| 5 |
-
|
| 6 |
-
# ------------------ Load models once ------------------
|
| 7 |
-
# Sentiment model
|
| 8 |
-
sentiment_pipeline = pipeline(
|
| 9 |
-
"sentiment-analysis",
|
| 10 |
-
model="sreejith8100/indian_output",
|
| 11 |
-
tokenizer="sreejith8100/indian_output",
|
| 12 |
-
device=0 if torch.cuda.is_available() else -1
|
| 13 |
-
)
|
| 14 |
-
|
| 15 |
-
# NER model
|
| 16 |
-
ner_tokenizer = AutoTokenizer.from_pretrained("ai4bharat/IndicNER", use_fast=True)
|
| 17 |
-
ner_model = AutoModelForTokenClassification.from_pretrained("ai4bharat/IndicNER")
|
| 18 |
-
ner_pipeline = pipeline(
|
| 19 |
-
"ner",
|
| 20 |
-
model=ner_model,
|
| 21 |
-
tokenizer=ner_tokenizer,
|
| 22 |
-
aggregation_strategy="simple",
|
| 23 |
-
device=0 if torch.cuda.is_available() else -1
|
| 24 |
-
)
|
| 25 |
-
|
| 26 |
-
# Canonical entity list
|
| 27 |
-
CANONICAL_ENTITIES = [
|
| 28 |
-
"V Abdurahiman / വി അബ്ദുറഹിമാൻ",
|
| 29 |
-
"P A Mohamed Riyas / പി എ മുഹമ്മദ് റിയാസ്",
|
| 30 |
-
"P Rajeev / പി രാജീവ്",
|
| 31 |
-
"Saji Cherian / സജി ചെറിയാൻ",
|
| 32 |
-
"Roshy Augustine / റോഷി ഓഗസ്റ്റിൻ",
|
| 33 |
-
"R Bindu / ആർ ബിന്ദു",
|
| 34 |
-
"A K Saseendran / എ കെ സസീന്ദ്രൻ",
|
| 35 |
-
"O R Kelu / ഒ ആർ കെലു",
|
| 36 |
-
"J Chinchurani / ജെ ചിഞ്ചുറാണി",
|
| 37 |
-
"K N Balagopal / കെ എൻ ബാലഗോപാൽ",
|
| 38 |
-
"K Krishnankutty / കെ കൃഷ്ണൻകുട്ടി",
|
| 39 |
-
"Veena George / വീണാ ജോർജ്",
|
| 40 |
-
"Antony Raju / ആന്റണി രാജു",
|
| 41 |
-
"K Rajan / കെ രാജൻ",
|
| 42 |
-
"M B Rajesh / എം ബി രാജേഷ്",
|
| 43 |
-
"Chittayam Gopakumar / ചിറ്റയം ഗോപകുമാർ",
|
| 44 |
-
"K Radhakrishnan / കെ രാധാകൃഷ്ണൻ",
|
| 45 |
-
"Pinarayi Vijayan / പിണറായി വിജയൻ",
|
| 46 |
-
"V Sivankutty / വി ശിവൻകുട്ടി",
|
| 47 |
-
"K K Shailaja / കെ കെ ശൈലജ"
|
| 48 |
-
]
|
| 49 |
-
|
| 50 |
-
def map_entity(entity_text, known_entities=CANONICAL_ENTITIES, threshold=70):
|
| 51 |
-
match, score, _ = process.extractOne(entity_text, known_entities)
|
| 52 |
-
if score >= threshold:
|
| 53 |
-
return match
|
| 54 |
-
return None
|
| 55 |
-
|
| 56 |
-
|
| 57 |
-
|
| 58 |
-
|
| 59 |
-
|
| 60 |
-
|
| 61 |
-
|
| 62 |
-
|
| 63 |
-
|
| 64 |
-
|
| 65 |
-
|
| 66 |
-
|
| 67 |
-
|
| 68 |
-
|
| 69 |
-
|
| 70 |
-
|
| 71 |
-
|
| 72 |
-
|
| 73 |
-
|
| 74 |
-
|
| 75 |
-
|
| 76 |
-
|
| 77 |
-
|
| 78 |
-
|
| 79 |
-
|
| 80 |
-
|
| 81 |
-
|
| 82 |
-
|
| 83 |
-
|
| 84 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import torch
|
| 2 |
+
import gradio as gr
|
| 3 |
+
from transformers import pipeline, AutoTokenizer, AutoModelForTokenClassification
|
| 4 |
+
from rapidfuzz import process
|
| 5 |
+
|
| 6 |
+
# ------------------ Load models once ------------------
|
| 7 |
+
# Sentiment model
|
| 8 |
+
sentiment_pipeline = pipeline(
|
| 9 |
+
"sentiment-analysis",
|
| 10 |
+
model="sreejith8100/indian_output",
|
| 11 |
+
tokenizer="sreejith8100/indian_output",
|
| 12 |
+
device=0 if torch.cuda.is_available() else -1
|
| 13 |
+
)
|
| 14 |
+
|
| 15 |
+
# NER model
|
| 16 |
+
ner_tokenizer = AutoTokenizer.from_pretrained("ai4bharat/IndicNER", use_fast=True)
|
| 17 |
+
ner_model = AutoModelForTokenClassification.from_pretrained("ai4bharat/IndicNER")
|
| 18 |
+
ner_pipeline = pipeline(
|
| 19 |
+
"ner",
|
| 20 |
+
model=ner_model,
|
| 21 |
+
tokenizer=ner_tokenizer,
|
| 22 |
+
aggregation_strategy="simple",
|
| 23 |
+
device=0 if torch.cuda.is_available() else -1
|
| 24 |
+
)
|
| 25 |
+
|
| 26 |
+
# Canonical entity list
|
| 27 |
+
CANONICAL_ENTITIES = [
|
| 28 |
+
"V Abdurahiman / വി അബ്ദുറഹിമാൻ",
|
| 29 |
+
"P A Mohamed Riyas / പി എ മുഹമ്മദ് റിയാസ്",
|
| 30 |
+
"P Rajeev / പി രാജീവ്",
|
| 31 |
+
"Saji Cherian / സജി ചെറിയാൻ",
|
| 32 |
+
"Roshy Augustine / റോഷി ഓഗസ്റ്റിൻ",
|
| 33 |
+
"R Bindu / ആർ ബിന്ദു",
|
| 34 |
+
"A K Saseendran / എ കെ സസീന്ദ്രൻ",
|
| 35 |
+
"O R Kelu / ഒ ആർ കെലു",
|
| 36 |
+
"J Chinchurani / ജെ ചിഞ്ചുറാണി",
|
| 37 |
+
"K N Balagopal / കെ എൻ ബാലഗോപാൽ",
|
| 38 |
+
"K Krishnankutty / കെ കൃഷ്ണൻകുട്ടി",
|
| 39 |
+
"Veena George / വീണാ ജോർജ്",
|
| 40 |
+
"Antony Raju / ആന്റണി രാജു",
|
| 41 |
+
"K Rajan / കെ രാജൻ",
|
| 42 |
+
"M B Rajesh / എം ബി രാജേഷ്",
|
| 43 |
+
"Chittayam Gopakumar / ചിറ്റയം ഗോപകുമാർ",
|
| 44 |
+
"K Radhakrishnan / കെ രാധാകൃഷ്ണൻ",
|
| 45 |
+
"Pinarayi Vijayan / പിണറായി വിജയൻ",
|
| 46 |
+
"V Sivankutty / വി ശിവൻകുട്ടി",
|
| 47 |
+
"K K Shailaja / കെ കെ ശൈലജ"
|
| 48 |
+
]
|
| 49 |
+
|
| 50 |
+
def map_entity(entity_text, known_entities=CANONICAL_ENTITIES, threshold=70):
|
| 51 |
+
match, score, _ = process.extractOne(entity_text, known_entities)
|
| 52 |
+
if score >= threshold:
|
| 53 |
+
return match
|
| 54 |
+
return None
|
| 55 |
+
|
| 56 |
+
# Map raw model labels to readable ones
|
| 57 |
+
label_map = {
|
| 58 |
+
"LABEL_0": "POSITIVE",
|
| 59 |
+
"LABEL_1": "NEGATIVE",
|
| 60 |
+
"LABEL_2": "NEUTRAL"
|
| 61 |
+
}
|
| 62 |
+
|
| 63 |
+
# ------------------ Prediction function ------------------
|
| 64 |
+
def predict(sentence):
|
| 65 |
+
# Run sentiment
|
| 66 |
+
sent_pred = sentiment_pipeline(sentence)[0]
|
| 67 |
+
human_label = label_map.get(sent_pred["label"], sent_pred["label"]) # map it
|
| 68 |
+
|
| 69 |
+
# Run NER + map
|
| 70 |
+
entities = ner_pipeline(sentence)
|
| 71 |
+
mapped_entities = [map_entity(ent["word"]) for ent in entities if map_entity(ent["word"])]
|
| 72 |
+
|
| 73 |
+
return {
|
| 74 |
+
"sentence": sentence,
|
| 75 |
+
"prediction": human_label, # use mapped label
|
| 76 |
+
"score": float(sent_pred["score"]),
|
| 77 |
+
"mapped_entities": list(set(mapped_entities))
|
| 78 |
+
}
|
| 79 |
+
|
| 80 |
+
# ------------------ Gradio Interface ------------------
|
| 81 |
+
demo = gr.Interface(
|
| 82 |
+
fn=predict,
|
| 83 |
+
inputs=gr.Textbox(label="Enter a sentence"),
|
| 84 |
+
outputs=gr.JSON(label="Result"),
|
| 85 |
+
title="Entity + Sentiment Analysis",
|
| 86 |
+
description="Upload a sentence in Malayalam/English. The app detects entities and predicts sentiment."
|
| 87 |
+
)
|
| 88 |
+
|
| 89 |
+
if __name__ == "__main__":
|
| 90 |
+
demo.launch(server_name="0.0.0.0", server_port=7860)
|