Spaces:
Sleeping
Sleeping
Updates
Browse files- Dockerfile +25 -12
- README.md +8 -1
- app.py +8 -6
Dockerfile
CHANGED
|
@@ -1,25 +1,38 @@
|
|
| 1 |
-
|
| 2 |
-
ARG DEBIAN_FRONTEND=noninteractive
|
| 3 |
|
| 4 |
-
|
| 5 |
-
|
| 6 |
-
#
|
|
|
|
| 7 |
|
| 8 |
-
|
| 9 |
|
| 10 |
-
RUN python -m pip install spaces pydantic
|
| 11 |
|
| 12 |
-
|
| 13 |
-
|
| 14 |
-
|
| 15 |
-
RUN
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 16 |
|
| 17 |
|
|
|
|
|
|
|
|
|
|
| 18 |
COPY InstallFromReadme.sh .
|
| 19 |
COPY README.md .
|
| 20 |
RUN chmod +x InstallFromReadme.sh
|
| 21 |
RUN ./InstallFromReadme.sh
|
| 22 |
|
| 23 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 24 |
|
| 25 |
CMD ["python","app.py"]
|
|
|
|
| 1 |
+
# copiado do build do hugging face em 27/12/2025
|
|
|
|
| 2 |
|
| 3 |
+
FROM docker.io/library/python:3.10@sha256:ad84630de0e8b6f2ee92b4e2996b08c269efa96be13558d0233ed08a0e190606
|
| 4 |
+
|
| 5 |
+
# COPY --from=root / /
|
| 6 |
+
COPY requirements.txt .
|
| 7 |
|
| 8 |
+
WORKDIR /app
|
| 9 |
|
|
|
|
| 10 |
|
| 11 |
+
RUN apt-get update && apt-get install -y git git-lfs ffmpeg libsm6 libxext6 cmake rsync libgl1 \
|
| 12 |
+
&& rm -rf /var/lib/apt/lists/* \
|
| 13 |
+
&& git lfs install
|
| 14 |
+
RUN pip install --no-cache-dir pip -U && pip install --no-cache-dir datasets "huggingface-hub>=0.30" "hf-transfer>=0.1.4" "protobuf<4" "click<8.1" "pydantic~=1.0"
|
| 15 |
+
RUN apt-get update && apt-get install -y curl && \
|
| 16 |
+
curl -fsSL https://deb.nodesource.com/setup_20.x | bash - && \
|
| 17 |
+
apt-get install -y nodejs && \
|
| 18 |
+
rm -rf /var/lib/apt/lists/* && \
|
| 19 |
+
apt-get clean
|
| 20 |
|
| 21 |
|
| 22 |
+
RUN --mount=target=/tmp/requirements.txt,source=requirements.txt pip install --no-cache-dir -r /tmp/requirements.txt
|
| 23 |
+
|
| 24 |
+
# instala o gradio a partir do readm!
|
| 25 |
COPY InstallFromReadme.sh .
|
| 26 |
COPY README.md .
|
| 27 |
RUN chmod +x InstallFromReadme.sh
|
| 28 |
RUN ./InstallFromReadme.sh
|
| 29 |
|
| 30 |
+
RUN pip install --no-cache-dir "uvicorn>=0.14.0" spaces
|
| 31 |
+
|
| 32 |
+
|
| 33 |
+
RUN mkdir -p /home/user && ( [ -e /home/user/app ] || ln -s /app/ /home/user/app ) || true
|
| 34 |
+
|
| 35 |
+
# -- o hf faz um --link.
|
| 36 |
+
COPY . /app
|
| 37 |
|
| 38 |
CMD ["python","app.py"]
|
README.md
CHANGED
|
@@ -4,9 +4,16 @@ emoji: 📉
|
|
| 4 |
colorFrom: gray
|
| 5 |
colorTo: indigo
|
| 6 |
sdk: gradio
|
| 7 |
-
sdk_version:
|
| 8 |
pinned: false
|
| 9 |
app_port: 8080
|
| 10 |
---
|
| 11 |
|
| 12 |
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 4 |
colorFrom: gray
|
| 5 |
colorTo: indigo
|
| 6 |
sdk: gradio
|
| 7 |
+
sdk_version: 6.2.0
|
| 8 |
pinned: false
|
| 9 |
app_port: 8080
|
| 10 |
---
|
| 11 |
|
| 12 |
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
| 13 |
+
|
| 14 |
+
This space contains lot of utilities to allow integrate your SQL Server 2025 with Hugging Face.
|
| 15 |
+
SQL Server 2025 was released with lot of AI support, like new vector data type, embeddings generation, support to ONNX, etc.
|
| 16 |
+
|
| 17 |
+
With this space, we can extend some capabilities of SQL 2025 brining useful info!
|
| 18 |
+
|
| 19 |
+
|
app.py
CHANGED
|
@@ -68,9 +68,9 @@ if not SpaceHost:
|
|
| 68 |
|
| 69 |
with gr.Blocks() as demo:
|
| 70 |
gr.Markdown(f"""
|
| 71 |
-
This space allow you connect SQL Server 2025 with Hugging Face to generate embeddings!
|
| 72 |
-
First, create a ZeroGPU Space that export an endpoint called embed.
|
| 73 |
-
That endpoint must accept a parameter called text.
|
| 74 |
Then, create the external model using T-SQL:
|
| 75 |
|
| 76 |
```sql
|
|
@@ -83,19 +83,21 @@ with gr.Blocks() as demo:
|
|
| 83 |
);
|
| 84 |
```
|
| 85 |
|
| 86 |
-
If you prefer, just type the space name into field bellow and we generate the right T-SQL command for you!
|
|
|
|
|
|
|
| 87 |
|
| 88 |
|
| 89 |
""")
|
| 90 |
|
| 91 |
SpaceName = gr.Textbox(label="Space", submit_btn=True)
|
| 92 |
EndpointName = gr.Textbox(value="/embed", label = "EndpointName");
|
| 93 |
-
tsqlCommand = gr.Textbox(lines=5);
|
| 94 |
|
| 95 |
|
| 96 |
def UpdateTsql(space):
|
| 97 |
return f"""
|
| 98 |
-
CREATE EXTERNAL MODEL
|
| 99 |
WITH (
|
| 100 |
LOCATION = 'https://{SpaceHost}/v1/embeddings',
|
| 101 |
API_FORMAT = 'OpenAI',
|
|
|
|
| 68 |
|
| 69 |
with gr.Blocks() as demo:
|
| 70 |
gr.Markdown(f"""
|
| 71 |
+
This space allow you connect SQL Server 2025 with Hugging Face to generate embeddings!
|
| 72 |
+
First, create a ZeroGPU Space that export an endpoint called /embed.
|
| 73 |
+
That endpoint must accept a parameter called text.
|
| 74 |
Then, create the external model using T-SQL:
|
| 75 |
|
| 76 |
```sql
|
|
|
|
| 83 |
);
|
| 84 |
```
|
| 85 |
|
| 86 |
+
If you prefer, just type the space name into field bellow and we generate the right T-SQL command for you!
|
| 87 |
+
|
| 88 |
+
You can duplicate this space to your own org and use token with CREDENTIAL parameter.
|
| 89 |
|
| 90 |
|
| 91 |
""")
|
| 92 |
|
| 93 |
SpaceName = gr.Textbox(label="Space", submit_btn=True)
|
| 94 |
EndpointName = gr.Textbox(value="/embed", label = "EndpointName");
|
| 95 |
+
tsqlCommand = gr.Textbox(lines=5, label = "Generated T-SQL command");
|
| 96 |
|
| 97 |
|
| 98 |
def UpdateTsql(space):
|
| 99 |
return f"""
|
| 100 |
+
CREATE EXTERNAL MODEL [MyHfModel] /*You can change the name here!*/
|
| 101 |
WITH (
|
| 102 |
LOCATION = 'https://{SpaceHost}/v1/embeddings',
|
| 103 |
API_FORMAT = 'OpenAI',
|