nsfw-det / app.py
spuun's picture
Update app.py
5ab85aa
raw
history blame
1.73 kB
from transformers import pipeline
import gradio as gr
import os
import requests
import timm
import torch
import json
nsfw_tf = pipeline(model="carbon225/vit-base-patch16-224-hentai")
if not os.path.exists("timm.ckpt"):
open("timm.ckpt", "wb").write(
requests.get(
"https://huggingface.co/deepghs/anime_rating/resolve/main/caformer_s36_plus/model.ckpt"
).content
)
open("timmcfg.json", "wb").write(
requests.get(
"https://huggingface.co/deepghs/anime_rating/resolve/main/caformer_s36_plus/meta.json"
).content
)
else:
print("Model already exists, skipping redownload")
with open("timmcfg.json") as file:
tm_cfg = json.load(file)
nsfw_tm = timm.create_model(
"caformer_s36.sail_in22k_ft_in1k_384",
checkpoint_path="./timm.ckpt",
model_config=tm_cfg,
pretrained=True
).eval()
tm_config = timm.data.resolve_model_data_config(nsfw_tm)
tm_trans = timm.data.create_transform(**tm_config)
def launch(img):
weight = 0
img = Image.open(img).convert('RGB')
tm_output = model.pretrained_cfg['labels'][
torch.argmax(
torch.nn.functional.softmax(
nsfw_tm(transforms(img).unsqueeze(0))[0], dim=0
)
)
]
match tm_output:
case "safe":
weight -= 2
case "r15":
weight += 1
case "r18":
weight += 2
tf_output = nsfw_tf(img)[0]["label"]
match tf_output:
case "safe":
weight -= 2
case "suggestive":
weight += 1
case "r18":
weight += 2
return weight > 0
app = gr.Interface(fn=generate, inputs="image", outputs="text")
app.launch()