spow12's picture
Update: clone from original and replace the model weights
104aac1
raw
history blame
12.3 kB
from typing import Any, Optional, Union, cast
import torch
from numpy.typing import NDArray
from style_bert_vits2.constants import Languages
from style_bert_vits2.logging import logger
from style_bert_vits2.models import commons, utils
from style_bert_vits2.models.hyper_parameters import HyperParameters
from style_bert_vits2.models.models import SynthesizerTrn
from style_bert_vits2.models.models_jp_extra import (
SynthesizerTrn as SynthesizerTrnJPExtra,
)
from style_bert_vits2.nlp import (
clean_text,
cleaned_text_to_sequence,
extract_bert_feature,
)
from style_bert_vits2.nlp.symbols import SYMBOLS
def get_net_g(model_path: str, version: str, device: str, hps: HyperParameters):
if version.endswith("JP-Extra"):
logger.info("Using JP-Extra model")
net_g = SynthesizerTrnJPExtra(
n_vocab=len(SYMBOLS),
spec_channels=hps.data.filter_length // 2 + 1,
segment_size=hps.train.segment_size // hps.data.hop_length,
n_speakers=hps.data.n_speakers,
# hps.model 以下のすべての値を引数に渡す
use_spk_conditioned_encoder=hps.model.use_spk_conditioned_encoder,
use_noise_scaled_mas=hps.model.use_noise_scaled_mas,
use_mel_posterior_encoder=hps.model.use_mel_posterior_encoder,
use_duration_discriminator=hps.model.use_duration_discriminator,
use_wavlm_discriminator=hps.model.use_wavlm_discriminator,
inter_channels=hps.model.inter_channels,
hidden_channels=hps.model.hidden_channels,
filter_channels=hps.model.filter_channels,
n_heads=hps.model.n_heads,
n_layers=hps.model.n_layers,
kernel_size=hps.model.kernel_size,
p_dropout=hps.model.p_dropout,
resblock=hps.model.resblock,
resblock_kernel_sizes=hps.model.resblock_kernel_sizes,
resblock_dilation_sizes=hps.model.resblock_dilation_sizes,
upsample_rates=hps.model.upsample_rates,
upsample_initial_channel=hps.model.upsample_initial_channel,
upsample_kernel_sizes=hps.model.upsample_kernel_sizes,
n_layers_q=hps.model.n_layers_q,
use_spectral_norm=hps.model.use_spectral_norm,
gin_channels=hps.model.gin_channels,
slm=hps.model.slm,
).to(device)
else:
logger.info("Using normal model")
net_g = SynthesizerTrn(
n_vocab=len(SYMBOLS),
spec_channels=hps.data.filter_length // 2 + 1,
segment_size=hps.train.segment_size // hps.data.hop_length,
n_speakers=hps.data.n_speakers,
# hps.model 以下のすべての値を引数に渡す
use_spk_conditioned_encoder=hps.model.use_spk_conditioned_encoder,
use_noise_scaled_mas=hps.model.use_noise_scaled_mas,
use_mel_posterior_encoder=hps.model.use_mel_posterior_encoder,
use_duration_discriminator=hps.model.use_duration_discriminator,
use_wavlm_discriminator=hps.model.use_wavlm_discriminator,
inter_channels=hps.model.inter_channels,
hidden_channels=hps.model.hidden_channels,
filter_channels=hps.model.filter_channels,
n_heads=hps.model.n_heads,
n_layers=hps.model.n_layers,
kernel_size=hps.model.kernel_size,
p_dropout=hps.model.p_dropout,
resblock=hps.model.resblock,
resblock_kernel_sizes=hps.model.resblock_kernel_sizes,
resblock_dilation_sizes=hps.model.resblock_dilation_sizes,
upsample_rates=hps.model.upsample_rates,
upsample_initial_channel=hps.model.upsample_initial_channel,
upsample_kernel_sizes=hps.model.upsample_kernel_sizes,
n_layers_q=hps.model.n_layers_q,
use_spectral_norm=hps.model.use_spectral_norm,
gin_channels=hps.model.gin_channels,
slm=hps.model.slm,
).to(device)
net_g.state_dict()
_ = net_g.eval()
if model_path.endswith(".pth") or model_path.endswith(".pt"):
_ = utils.checkpoints.load_checkpoint(
model_path, net_g, None, skip_optimizer=True
)
elif model_path.endswith(".safetensors"):
_ = utils.safetensors.load_safetensors(model_path, net_g, True)
else:
raise ValueError(f"Unknown model format: {model_path}")
return net_g
def get_text(
text: str,
language_str: Languages,
hps: HyperParameters,
device: str,
assist_text: Optional[str] = None,
assist_text_weight: float = 0.7,
given_phone: Optional[list[str]] = None,
given_tone: Optional[list[int]] = None,
):
use_jp_extra = hps.version.endswith("JP-Extra")
# 推論時のみ呼び出されるので、raise_yomi_error は False に設定
norm_text, phone, tone, word2ph = clean_text(
text,
language_str,
use_jp_extra=use_jp_extra,
raise_yomi_error=False,
)
# phone と tone の両方が与えられた場合はそれを使う
if given_phone is not None and given_tone is not None:
# 指定された phone と指定された tone 両方の長さが一致していなければならない
if len(given_phone) != len(given_tone):
raise InvalidPhoneError(
f"Length of given_phone ({len(given_phone)}) != length of given_tone ({len(given_tone)})"
)
# 与えられた音素数と pyopenjtalk で生成した読みの音素数が一致しない
if len(given_phone) != sum(word2ph):
# 日本語の場合、len(given_phone) と sum(word2ph) が一致するように word2ph を適切に調整する
# 他の言語は word2ph の調整方法が思いつかないのでエラー
if language_str == Languages.JP:
from style_bert_vits2.nlp.japanese.g2p import adjust_word2ph
word2ph = adjust_word2ph(word2ph, phone, given_phone)
# 上記処理により word2ph の合計が given_phone の長さと一致するはず
# それでも一致しない場合、大半は読み上げテキストと given_phone が著しく乖離していて調整し切れなかったことを意味する
if len(given_phone) != sum(word2ph):
raise InvalidPhoneError(
f"Length of given_phone ({len(given_phone)}) != sum of word2ph ({sum(word2ph)})"
)
else:
raise InvalidPhoneError(
f"Length of given_phone ({len(given_phone)}) != sum of word2ph ({sum(word2ph)})"
)
phone = given_phone
# 生成あるいは指定された phone と指定された tone 両方の長さが一致していなければならない
if len(phone) != len(given_tone):
raise InvalidToneError(
f"Length of phone ({len(phone)}) != length of given_tone ({len(given_tone)})"
)
tone = given_tone
# tone だけが与えられた場合は clean_text() で生成した phone と合わせて使う
elif given_tone is not None:
# 生成した phone と指定された tone 両方の長さが一致していなければならない
if len(phone) != len(given_tone):
raise InvalidToneError(
f"Length of phone ({len(phone)}) != length of given_tone ({len(given_tone)})"
)
tone = given_tone
phone, tone, language = cleaned_text_to_sequence(phone, tone, language_str)
if hps.data.add_blank:
phone = commons.intersperse(phone, 0)
tone = commons.intersperse(tone, 0)
language = commons.intersperse(language, 0)
for i in range(len(word2ph)):
word2ph[i] = word2ph[i] * 2
word2ph[0] += 1
bert_ori = extract_bert_feature(
norm_text,
word2ph,
language_str,
device,
assist_text,
assist_text_weight,
)
del word2ph
assert bert_ori.shape[-1] == len(phone), phone
if language_str == Languages.ZH:
bert = bert_ori
ja_bert = torch.zeros(1024, len(phone))
en_bert = torch.zeros(1024, len(phone))
elif language_str == Languages.JP:
bert = torch.zeros(1024, len(phone))
ja_bert = bert_ori
en_bert = torch.zeros(1024, len(phone))
elif language_str == Languages.EN:
bert = torch.zeros(1024, len(phone))
ja_bert = torch.zeros(1024, len(phone))
en_bert = bert_ori
else:
raise ValueError("language_str should be ZH, JP or EN")
assert bert.shape[-1] == len(
phone
), f"Bert seq len {bert.shape[-1]} != {len(phone)}"
phone = torch.LongTensor(phone)
tone = torch.LongTensor(tone)
language = torch.LongTensor(language)
return bert, ja_bert, en_bert, phone, tone, language
def infer(
text: str,
style_vec: NDArray[Any],
sdp_ratio: float,
noise_scale: float,
noise_scale_w: float,
length_scale: float,
sid: int, # In the original Bert-VITS2, its speaker_name: str, but here it's id
language: Languages,
hps: HyperParameters,
net_g: Union[SynthesizerTrn, SynthesizerTrnJPExtra],
device: str,
skip_start: bool = False,
skip_end: bool = False,
assist_text: Optional[str] = None,
assist_text_weight: float = 0.7,
given_phone: Optional[list[str]] = None,
given_tone: Optional[list[int]] = None,
):
is_jp_extra = hps.version.endswith("JP-Extra")
bert, ja_bert, en_bert, phones, tones, lang_ids = get_text(
text,
language,
hps,
device,
assist_text=assist_text,
assist_text_weight=assist_text_weight,
given_phone=given_phone,
given_tone=given_tone,
)
if skip_start:
phones = phones[3:]
tones = tones[3:]
lang_ids = lang_ids[3:]
bert = bert[:, 3:]
ja_bert = ja_bert[:, 3:]
en_bert = en_bert[:, 3:]
if skip_end:
phones = phones[:-2]
tones = tones[:-2]
lang_ids = lang_ids[:-2]
bert = bert[:, :-2]
ja_bert = ja_bert[:, :-2]
en_bert = en_bert[:, :-2]
with torch.no_grad():
x_tst = phones.to(device).unsqueeze(0)
tones = tones.to(device).unsqueeze(0)
lang_ids = lang_ids.to(device).unsqueeze(0)
bert = bert.to(device).unsqueeze(0)
ja_bert = ja_bert.to(device).unsqueeze(0)
en_bert = en_bert.to(device).unsqueeze(0)
x_tst_lengths = torch.LongTensor([phones.size(0)]).to(device)
style_vec_tensor = torch.from_numpy(style_vec).to(device).unsqueeze(0)
del phones
sid_tensor = torch.LongTensor([sid]).to(device)
if is_jp_extra:
output = cast(SynthesizerTrnJPExtra, net_g).infer(
x_tst,
x_tst_lengths,
sid_tensor,
tones,
lang_ids,
ja_bert,
style_vec=style_vec_tensor,
sdp_ratio=sdp_ratio,
noise_scale=noise_scale,
noise_scale_w=noise_scale_w,
length_scale=length_scale,
)
else:
output = cast(SynthesizerTrn, net_g).infer(
x_tst,
x_tst_lengths,
sid_tensor,
tones,
lang_ids,
bert,
ja_bert,
en_bert,
style_vec=style_vec_tensor,
sdp_ratio=sdp_ratio,
noise_scale=noise_scale,
noise_scale_w=noise_scale_w,
length_scale=length_scale,
)
audio = output[0][0, 0].data.cpu().float().numpy()
del (
x_tst,
tones,
lang_ids,
bert,
x_tst_lengths,
sid_tensor,
ja_bert,
en_bert,
style_vec,
) # , emo
if torch.cuda.is_available():
torch.cuda.empty_cache()
return audio
class InvalidPhoneError(ValueError):
pass
class InvalidToneError(ValueError):
pass