Spaces:
Runtime error
Runtime error
agorlanov
commited on
Commit
•
ad99144
1
Parent(s):
a227627
fix readme
Browse files- README.md +13 -6
- app.py +6 -2
- main_pipeline.py +3 -2
- utils/denoise_pipeline.py +3 -5
README.md
CHANGED
@@ -9,8 +9,7 @@ app_file: app.py
|
|
9 |
pinned: false
|
10 |
---
|
11 |
|
12 |
-
|
13 |
-
How inference:
|
14 |
1) [huggingface](https://huggingface.co/spaces/deepkotix/denoise_and_diarization)
|
15 |
2) [telegram bot](https://t.me/diarizarion_bot)
|
16 |
3) run local inference:
|
@@ -19,11 +18,19 @@ How inference:
|
|
19 |
2) Inference local:
|
20 |
`python main_pipeline.py --audio-path dialog.mp3`
|
21 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
22 |
|
23 |
-
| |
|
24 |
-
|
25 |
-
| cpu 2v CPU huggingece |
|
26 |
-
| gpu tesla v100 |
|
27 |
|
28 |
|
29 |
|
|
|
9 |
pinned: false
|
10 |
---
|
11 |
|
12 |
+
# How inference:
|
|
|
13 |
1) [huggingface](https://huggingface.co/spaces/deepkotix/denoise_and_diarization)
|
14 |
2) [telegram bot](https://t.me/diarizarion_bot)
|
15 |
3) run local inference:
|
|
|
18 |
2) Inference local:
|
19 |
`python main_pipeline.py --audio-path dialog.mp3`
|
20 |
|
21 |
+
# About pipeline:
|
22 |
+
+ denoise audio
|
23 |
+
+ vad(voice activity detector)
|
24 |
+
+ speaker embeddings from each vad fragments
|
25 |
+
+ clustering this embeddings
|
26 |
+
|
27 |
+
|
28 |
+
# Inference for hardware
|
29 |
|
30 |
+
| | inference time for file dialog.mp3 |
|
31 |
+
|-----------------------|:------------------------------------:|
|
32 |
+
| cpu 2v CPU huggingece | 453.8 s/it |
|
33 |
+
| gpu tesla v100 | 8.23 s/it |
|
34 |
|
35 |
|
36 |
|
app.py
CHANGED
@@ -3,12 +3,14 @@ import gradio as gr
|
|
3 |
from main_pipeline import main_pipeline
|
4 |
from scipy.io.wavfile import write
|
5 |
|
6 |
-
title = "audio_denoise and speakser diarization. Faster inference [tg_bot](
|
|
|
7 |
|
8 |
example_list = [
|
9 |
["dialog.mp3"]
|
10 |
]
|
11 |
|
|
|
12 |
def app_pipeline(audio):
|
13 |
audio_path = 'test.wav'
|
14 |
write(audio_path, audio[0], audio[1])
|
@@ -17,12 +19,14 @@ def app_pipeline(audio):
|
|
17 |
return result_diarization + [None] * (10 - len(result_diarization))
|
18 |
|
19 |
|
|
|
20 |
gr.Interface(
|
21 |
app_pipeline,
|
22 |
gr.Audio(type="numpy", label="Input"),
|
23 |
[gr.Audio(visible=True) for i in range(10)],
|
24 |
title=title,
|
25 |
examples=example_list,
|
26 |
-
cache_examples=False
|
|
|
27 |
|
28 |
).launch(enable_queue=True)
|
|
|
3 |
from main_pipeline import main_pipeline
|
4 |
from scipy.io.wavfile import write
|
5 |
|
6 |
+
title = "audio_denoise and speakser diarization. Faster inference [tg_bot]()"
|
7 |
+
description = '''Faster inference tg_bot - https://t.me/diarizarion_bot '''
|
8 |
|
9 |
example_list = [
|
10 |
["dialog.mp3"]
|
11 |
]
|
12 |
|
13 |
+
|
14 |
def app_pipeline(audio):
|
15 |
audio_path = 'test.wav'
|
16 |
write(audio_path, audio[0], audio[1])
|
|
|
19 |
return result_diarization + [None] * (10 - len(result_diarization))
|
20 |
|
21 |
|
22 |
+
|
23 |
gr.Interface(
|
24 |
app_pipeline,
|
25 |
gr.Audio(type="numpy", label="Input"),
|
26 |
[gr.Audio(visible=True) for i in range(10)],
|
27 |
title=title,
|
28 |
examples=example_list,
|
29 |
+
cache_examples=False,
|
30 |
+
description=description
|
31 |
|
32 |
).launch(enable_queue=True)
|
main_pipeline.py
CHANGED
@@ -31,7 +31,7 @@ def save_speaker_audios(segments, denoised_audio_path, out_folder='out', out_f=4
|
|
31 |
|
32 |
out_wav_paths.append(out_wav_path)
|
33 |
|
34 |
-
return out_wav_paths
|
35 |
|
36 |
|
37 |
def main_pipeline(audio_path):
|
@@ -39,7 +39,7 @@ def main_pipeline(audio_path):
|
|
39 |
|
40 |
denoised_audio_path = denoise(audio_path, device)
|
41 |
segments = diarization(denoised_audio_path)
|
42 |
-
result_diarization = save_speaker_audios(segments, denoised_audio_path)
|
43 |
return denoised_audio_path, result_diarization
|
44 |
|
45 |
|
@@ -47,5 +47,6 @@ if __name__ == '__main__':
|
|
47 |
parser = argparse.ArgumentParser()
|
48 |
parser.add_argument('--audio-path', default='dialog.mp3', help='Path to audio')
|
49 |
opt = parser.parse_args()
|
|
|
50 |
for _ in tqdm(range(10)):
|
51 |
main_pipeline(audio_path=opt.audio_path)
|
|
|
31 |
|
32 |
out_wav_paths.append(out_wav_path)
|
33 |
|
34 |
+
return out_wav_paths[:10]
|
35 |
|
36 |
|
37 |
def main_pipeline(audio_path):
|
|
|
39 |
|
40 |
denoised_audio_path = denoise(audio_path, device)
|
41 |
segments = diarization(denoised_audio_path)
|
42 |
+
result_diarization = save_speaker_audios(segments, denoised_audio_path, out_folder='out')
|
43 |
return denoised_audio_path, result_diarization
|
44 |
|
45 |
|
|
|
47 |
parser = argparse.ArgumentParser()
|
48 |
parser.add_argument('--audio-path', default='dialog.mp3', help='Path to audio')
|
49 |
opt = parser.parse_args()
|
50 |
+
|
51 |
for _ in tqdm(range(10)):
|
52 |
main_pipeline(audio_path=opt.audio_path)
|
utils/denoise_pipeline.py
CHANGED
@@ -10,10 +10,8 @@ from demucs.pretrained import get_model
|
|
10 |
demucs_model = get_model('htdemucs')
|
11 |
|
12 |
|
13 |
-
def denoise(filename: str, device: str) -> str:
|
14 |
-
|
15 |
wav_ref, sr = librosa.load(filename, mono=False, sr=44100)
|
16 |
-
|
17 |
wav = torch.tensor(wav_ref)
|
18 |
wav = torch.cat([wav.unsqueeze(0), wav.unsqueeze(0)]) if len(wav.shape) == 1 else wav
|
19 |
ref = wav.mean(0)
|
@@ -28,9 +26,9 @@ def denoise(filename: str, device: str) -> str:
|
|
28 |
vocal_wav = librosa.to_mono(vocal_wav)
|
29 |
vocal_wav = vocal_wav.T
|
30 |
vocal_wav = librosa.resample(vocal_wav, orig_sr=44100, target_sr=48000)
|
31 |
-
write(
|
32 |
|
33 |
-
return
|
34 |
|
35 |
|
36 |
if __name__ == '__main__':
|
|
|
10 |
demucs_model = get_model('htdemucs')
|
11 |
|
12 |
|
13 |
+
def denoise(filename: str, device: str, out_filename='denoise.wav') -> str:
|
|
|
14 |
wav_ref, sr = librosa.load(filename, mono=False, sr=44100)
|
|
|
15 |
wav = torch.tensor(wav_ref)
|
16 |
wav = torch.cat([wav.unsqueeze(0), wav.unsqueeze(0)]) if len(wav.shape) == 1 else wav
|
17 |
ref = wav.mean(0)
|
|
|
26 |
vocal_wav = librosa.to_mono(vocal_wav)
|
27 |
vocal_wav = vocal_wav.T
|
28 |
vocal_wav = librosa.resample(vocal_wav, orig_sr=44100, target_sr=48000)
|
29 |
+
write(out_filename, 48000, vocal_wav)
|
30 |
|
31 |
+
return out_filename
|
32 |
|
33 |
|
34 |
if __name__ == '__main__':
|