Spaces:
Runtime error
Runtime error
future-xy
commited on
Commit
·
1ae96c8
1
Parent(s):
581fdbd
fix tps
Browse files
backend-cli.py
CHANGED
|
@@ -12,7 +12,7 @@ from src.backend.run_eval_suite import run_evaluation
|
|
| 12 |
from src.backend.manage_requests import check_completed_evals, get_eval_requests, set_eval_request
|
| 13 |
from src.backend.sort_queue import sort_models_by_priority
|
| 14 |
from src.backend.envs import Tasks, EVAL_REQUESTS_PATH_BACKEND, EVAL_RESULTS_PATH_BACKEND, DEVICE, LIMIT, Task
|
| 15 |
-
|
| 16 |
from src.backend.manage_requests import EvalRequest
|
| 17 |
from src.leaderboard.read_evals import EvalResult
|
| 18 |
|
|
@@ -124,7 +124,7 @@ def request_to_result_name(request: EvalRequest) -> str:
|
|
| 124 |
|
| 125 |
|
| 126 |
def process_evaluation(task: Task, eval_request: EvalRequest) -> dict:
|
| 127 |
-
batch_size =
|
| 128 |
try:
|
| 129 |
results = run_evaluation(
|
| 130 |
eval_request=eval_request,
|
|
@@ -404,7 +404,8 @@ if __name__ == "__main__":
|
|
| 404 |
local_debug = args.debug
|
| 405 |
# debug specific task by ping
|
| 406 |
if local_debug:
|
| 407 |
-
debug_model_names = ["mistralai/Mixtral-8x7B-Instruct-v0.1"]
|
|
|
|
| 408 |
# debug_model_names = ["TheBloke/Mixtral-8x7B-v0.1-GPTQ"]
|
| 409 |
debug_task_name = 'selfcheckgpt'
|
| 410 |
# debug_task_name = "mmlu"
|
|
@@ -415,7 +416,7 @@ if __name__ == "__main__":
|
|
| 415 |
if task_name != debug_task_name:
|
| 416 |
continue
|
| 417 |
eval_request = EvalRequest(
|
| 418 |
-
model=debug_model_name, private=False, status="", json_filepath="", precision="float16"
|
| 419 |
)
|
| 420 |
results = process_evaluation(task, eval_request)
|
| 421 |
else:
|
|
|
|
| 12 |
from src.backend.manage_requests import check_completed_evals, get_eval_requests, set_eval_request
|
| 13 |
from src.backend.sort_queue import sort_models_by_priority
|
| 14 |
from src.backend.envs import Tasks, EVAL_REQUESTS_PATH_BACKEND, EVAL_RESULTS_PATH_BACKEND, DEVICE, LIMIT, Task
|
| 15 |
+
LIMIT=2
|
| 16 |
from src.backend.manage_requests import EvalRequest
|
| 17 |
from src.leaderboard.read_evals import EvalResult
|
| 18 |
|
|
|
|
| 124 |
|
| 125 |
|
| 126 |
def process_evaluation(task: Task, eval_request: EvalRequest) -> dict:
|
| 127 |
+
batch_size = 1
|
| 128 |
try:
|
| 129 |
results = run_evaluation(
|
| 130 |
eval_request=eval_request,
|
|
|
|
| 404 |
local_debug = args.debug
|
| 405 |
# debug specific task by ping
|
| 406 |
if local_debug:
|
| 407 |
+
# debug_model_names = ["mistralai/Mixtral-8x7B-Instruct-v0.1"]
|
| 408 |
+
debug_model_names = ["facebook/opt-1.3b"]
|
| 409 |
# debug_model_names = ["TheBloke/Mixtral-8x7B-v0.1-GPTQ"]
|
| 410 |
debug_task_name = 'selfcheckgpt'
|
| 411 |
# debug_task_name = "mmlu"
|
|
|
|
| 416 |
if task_name != debug_task_name:
|
| 417 |
continue
|
| 418 |
eval_request = EvalRequest(
|
| 419 |
+
model=debug_model_name, private=False, status="", json_filepath="", precision="float16", inference_framework="hf-chat"
|
| 420 |
)
|
| 421 |
results = process_evaluation(task, eval_request)
|
| 422 |
else:
|
src/backend/hflm_with_measurement.py
CHANGED
|
@@ -1,7 +1,7 @@
|
|
| 1 |
import copy
|
| 2 |
import os
|
| 3 |
from datetime import timedelta
|
| 4 |
-
import
|
| 5 |
from pathlib import Path
|
| 6 |
from typing import List, Literal, Optional, Tuple, Union
|
| 7 |
|
|
@@ -22,6 +22,7 @@ from transformers.models.auto.modeling_auto import (
|
|
| 22 |
MODEL_FOR_CAUSAL_LM_MAPPING_NAMES,
|
| 23 |
MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES,
|
| 24 |
)
|
|
|
|
| 25 |
|
| 26 |
from lm_eval import utils
|
| 27 |
from lm_eval.api.instance import Instance
|
|
@@ -37,6 +38,31 @@ from lm_eval.models.utils import (
|
|
| 37 |
from lm_eval.models.huggingface import HFLM
|
| 38 |
|
| 39 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 40 |
class HFLMWithMeasurement(HFLM):
|
| 41 |
def __init__(self, **kwargs):
|
| 42 |
super().__init__(**kwargs)
|
|
@@ -59,14 +85,27 @@ class HFLMWithMeasurement(HFLM):
|
|
| 59 |
stopping_criteria = stop_sequences_criteria(
|
| 60 |
self.tokenizer, stop, context.shape[1], context.shape[0]
|
| 61 |
)
|
| 62 |
-
|
|
|
|
|
|
|
| 63 |
input_ids=context,
|
| 64 |
max_length=max_length,
|
| 65 |
stopping_criteria=stopping_criteria,
|
| 66 |
pad_token_id=self.tokenizer.pad_token_id,
|
| 67 |
use_cache=True,
|
|
|
|
| 68 |
**generation_kwargs,
|
| 69 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 70 |
|
| 71 |
def generate_until(
|
| 72 |
self, requests: List[Instance], disable_tqdm: bool = False
|
|
@@ -174,7 +213,7 @@ class HFLMWithMeasurement(HFLM):
|
|
| 174 |
kwargs["max_length"] = context_enc.shape[1] + max_gen_toks
|
| 175 |
|
| 176 |
# perform batched generation
|
| 177 |
-
cont = self._model_generate(
|
| 178 |
context=context_enc,
|
| 179 |
attention_mask=attn_masks,
|
| 180 |
stop=until,
|
|
@@ -196,7 +235,7 @@ class HFLMWithMeasurement(HFLM):
|
|
| 196 |
# for seq2seq case where self.tok_decode(self.eot_token_id) = ''
|
| 197 |
s = s.split(term)[0]
|
| 198 |
|
| 199 |
-
res.append((s,
|
| 200 |
|
| 201 |
self.cache_hook.add_partial("generate_until", (context, gen_kwargs), s)
|
| 202 |
pbar.update(1)
|
|
|
|
| 1 |
import copy
|
| 2 |
import os
|
| 3 |
from datetime import timedelta
|
| 4 |
+
from time import time
|
| 5 |
from pathlib import Path
|
| 6 |
from typing import List, Literal, Optional, Tuple, Union
|
| 7 |
|
|
|
|
| 22 |
MODEL_FOR_CAUSAL_LM_MAPPING_NAMES,
|
| 23 |
MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES,
|
| 24 |
)
|
| 25 |
+
from transformers import TextStreamer
|
| 26 |
|
| 27 |
from lm_eval import utils
|
| 28 |
from lm_eval.api.instance import Instance
|
|
|
|
| 38 |
from lm_eval.models.huggingface import HFLM
|
| 39 |
|
| 40 |
|
| 41 |
+
class StopWatch(TextStreamer):
|
| 42 |
+
def __init__(self, *args, **kwargs):
|
| 43 |
+
super().__init__(*args, **kwargs)
|
| 44 |
+
self.start_prefilling = None
|
| 45 |
+
self.prefilling_time = None
|
| 46 |
+
self.start_decoding = None
|
| 47 |
+
self.decoding_time = None
|
| 48 |
+
self.decoding_iterations = 0
|
| 49 |
+
|
| 50 |
+
def put(self, value):
|
| 51 |
+
if self.start_prefilling is None:
|
| 52 |
+
self.start_prefilling = time()
|
| 53 |
+
return
|
| 54 |
+
elif self.prefilling_time is None:
|
| 55 |
+
self.prefilling_time = time() - self.start_prefilling
|
| 56 |
+
self.start_decoding = time()
|
| 57 |
+
self.decoding_iterations += 1
|
| 58 |
+
return
|
| 59 |
+
|
| 60 |
+
def end(self):
|
| 61 |
+
if self.decoding_time is None and self.start_decoding is not None:
|
| 62 |
+
self.decoding_time = time() - self.start_decoding
|
| 63 |
+
return
|
| 64 |
+
|
| 65 |
+
|
| 66 |
class HFLMWithMeasurement(HFLM):
|
| 67 |
def __init__(self, **kwargs):
|
| 68 |
super().__init__(**kwargs)
|
|
|
|
| 85 |
stopping_criteria = stop_sequences_criteria(
|
| 86 |
self.tokenizer, stop, context.shape[1], context.shape[0]
|
| 87 |
)
|
| 88 |
+
stop_watch = StopWatch(self.tokenizer)
|
| 89 |
+
start = time()
|
| 90 |
+
res = self.model.generate(
|
| 91 |
input_ids=context,
|
| 92 |
max_length=max_length,
|
| 93 |
stopping_criteria=stopping_criteria,
|
| 94 |
pad_token_id=self.tokenizer.pad_token_id,
|
| 95 |
use_cache=True,
|
| 96 |
+
streamer=stop_watch,
|
| 97 |
**generation_kwargs,
|
| 98 |
)
|
| 99 |
+
end = time()
|
| 100 |
+
|
| 101 |
+
batch_size = context.shape[0]
|
| 102 |
+
output_length = stop_watch.decoding_iterations
|
| 103 |
+
|
| 104 |
+
end_to_end_time = (end - start) / batch_size
|
| 105 |
+
prefilling_time = stop_watch.prefilling_time / batch_size
|
| 106 |
+
decoding_time = stop_watch.decoding_time / batch_size
|
| 107 |
+
token_per_sec = output_length / decoding_time
|
| 108 |
+
return res, end_to_end_time, prefilling_time, token_per_sec
|
| 109 |
|
| 110 |
def generate_until(
|
| 111 |
self, requests: List[Instance], disable_tqdm: bool = False
|
|
|
|
| 213 |
kwargs["max_length"] = context_enc.shape[1] + max_gen_toks
|
| 214 |
|
| 215 |
# perform batched generation
|
| 216 |
+
cont, end_to_end_time, prefilling_time, token_per_sec = self._model_generate(
|
| 217 |
context=context_enc,
|
| 218 |
attention_mask=attn_masks,
|
| 219 |
stop=until,
|
|
|
|
| 235 |
# for seq2seq case where self.tok_decode(self.eot_token_id) = ''
|
| 236 |
s = s.split(term)[0]
|
| 237 |
|
| 238 |
+
res.append((s, end_to_end_time, prefilling_time, token_per_sec))
|
| 239 |
|
| 240 |
self.cache_hook.add_partial("generate_until", (context, gen_kwargs), s)
|
| 241 |
pbar.update(1)
|
src/backend/tasks/measurement_task_utils.py
CHANGED
|
@@ -9,12 +9,20 @@ def process_results_decorator(func):
|
|
| 9 |
# We process the results here
|
| 10 |
processed_results = [r[0] for r in results]
|
| 11 |
|
| 12 |
-
|
| 13 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 14 |
|
| 15 |
# Now call the original process_results with the processed results
|
| 16 |
result_dict = func(self, doc, processed_results, *args, **kwargs)
|
| 17 |
-
result_dict["
|
|
|
|
|
|
|
| 18 |
return result_dict
|
| 19 |
return wrapper
|
| 20 |
|
|
@@ -23,7 +31,9 @@ def aggregation_decorator(func):
|
|
| 23 |
@functools.wraps(func)
|
| 24 |
def wrapper(self, *args, **kwargs):
|
| 25 |
aggregation_list = func(self, *args, **kwargs)
|
| 26 |
-
aggregation_list["
|
|
|
|
|
|
|
| 27 |
return aggregation_list
|
| 28 |
return wrapper
|
| 29 |
|
|
@@ -32,7 +42,9 @@ def higher_is_better_decorator(func):
|
|
| 32 |
@functools.wraps(func)
|
| 33 |
def wrapper(self, *args, **kwargs):
|
| 34 |
higher_is_better_dict = func(self, *args, **kwargs)
|
| 35 |
-
higher_is_better_dict["
|
|
|
|
|
|
|
| 36 |
return higher_is_better_dict
|
| 37 |
return wrapper
|
| 38 |
|
|
|
|
| 9 |
# We process the results here
|
| 10 |
processed_results = [r[0] for r in results]
|
| 11 |
|
| 12 |
+
# end_to_end_time = end_to_end_time / batch_size
|
| 13 |
+
# prefilling_time = prefilling_time / batch_size
|
| 14 |
+
# token_per_sec = output_length / (decoding_time / batch_size)
|
| 15 |
+
|
| 16 |
+
end_to_end_time = sum([r[1] for r in results]) / len(results)
|
| 17 |
+
prefilling_time = sum([r[2] for r in results]) / len(results)
|
| 18 |
+
token_per_sec = sum([r[3] for r in results]) / len(results)
|
| 19 |
+
print(f"end_to_end_time: {end_to_end_time}, prefilling_time: {prefilling_time}, token_per_sec: {token_per_sec}")
|
| 20 |
|
| 21 |
# Now call the original process_results with the processed results
|
| 22 |
result_dict = func(self, doc, processed_results, *args, **kwargs)
|
| 23 |
+
result_dict["end_to_end_time"] = end_to_end_time
|
| 24 |
+
result_dict["prefilling_time"] = prefilling_time
|
| 25 |
+
result_dict["token_per_sec"] = token_per_sec
|
| 26 |
return result_dict
|
| 27 |
return wrapper
|
| 28 |
|
|
|
|
| 31 |
@functools.wraps(func)
|
| 32 |
def wrapper(self, *args, **kwargs):
|
| 33 |
aggregation_list = func(self, *args, **kwargs)
|
| 34 |
+
aggregation_list["end_to_end_time"] = mean
|
| 35 |
+
aggregation_list["prefilling_time"] = mean
|
| 36 |
+
aggregation_list["token_per_sec"] = mean
|
| 37 |
return aggregation_list
|
| 38 |
return wrapper
|
| 39 |
|
|
|
|
| 42 |
@functools.wraps(func)
|
| 43 |
def wrapper(self, *args, **kwargs):
|
| 44 |
higher_is_better_dict = func(self, *args, **kwargs)
|
| 45 |
+
higher_is_better_dict["end_to_end_time"] = False
|
| 46 |
+
higher_is_better_dict["prefilling_time"] = False
|
| 47 |
+
higher_is_better_dict["token_per_sec"] = True
|
| 48 |
return higher_is_better_dict
|
| 49 |
return wrapper
|
| 50 |
|