open-moe-llm-leaderboard / cli /completed-cli.py
future-xy
formatting code
d6d7ec6
raw
history blame
4.8 kB
#!/usr/bin/env python
from huggingface_hub import snapshot_download
from src.backend.manage_requests import get_eval_requests
from src.backend.sort_queue import sort_models_by_priority
from src.backend.envs import Tasks, EVAL_REQUESTS_PATH_BACKEND, EVAL_RESULTS_PATH_BACKEND
from src.backend.manage_requests import EvalRequest
from src.leaderboard.read_evals import EvalResult
from src.envs import QUEUE_REPO, RESULTS_REPO, API
import logging
import pprint
logging.getLogger("openai").setLevel(logging.WARNING)
logging.basicConfig(level=logging.ERROR)
pp = pprint.PrettyPrinter(width=80)
PENDING_STATUS = "PENDING"
RUNNING_STATUS = "RUNNING"
FINISHED_STATUS = "FINISHED"
FAILED_STATUS = "FAILED"
TASKS_HARNESS = [task.value for task in Tasks]
snapshot_download(
repo_id=RESULTS_REPO, revision="main", local_dir=EVAL_RESULTS_PATH_BACKEND, repo_type="dataset", max_workers=60
)
snapshot_download(
repo_id=QUEUE_REPO, revision="main", local_dir=EVAL_REQUESTS_PATH_BACKEND, repo_type="dataset", max_workers=60
)
def request_to_result_name(request: EvalRequest) -> str:
org_and_model = request.model.split("/", 1)
if len(org_and_model) == 1:
model = org_and_model[0]
res = f"{model}_{request.precision}"
else:
org = org_and_model[0]
model = org_and_model[1]
res = f"{org}_{model}_{request.precision}"
return res
def process_finished_requests() -> bool:
current_finished_status = [FINISHED_STATUS]
if False:
import os
import dateutil
model_result_filepaths = []
results_path = f"{EVAL_RESULTS_PATH_BACKEND}/EleutherAI/gpt-neo-1.3B"
requests_path = f"{EVAL_REQUESTS_PATH_BACKEND}/EleutherAI/gpt-neo-1.3B_eval_request_False_False_False.json"
for root, _, files in os.walk(results_path):
# We should only have json files in model results
if len(files) == 0 or any([not f.endswith(".json") for f in files]):
continue
# Sort the files by date
try:
files.sort(key=lambda x: x.removesuffix(".json").removeprefix("results_")[:-7])
except dateutil.parser._parser.ParserError:
files = [files[-1]]
for file in files:
model_result_filepaths.append(os.path.join(root, file))
eval_results = {}
for model_result_filepath in model_result_filepaths:
# Creation of result
eval_result = EvalResult.init_from_json_file(model_result_filepath)
eval_result.update_with_request_file(requests_path)
print("XXX", eval_result)
# Store results of same eval together
eval_name = eval_result.eval_name
if eval_name in eval_results.keys():
eval_results[eval_name].results.update({k: v for k, v in eval_result.results.items() if v is not None})
else:
eval_results[eval_name] = eval_result
print(eval_results)
return True
# Get all eval request that are FINISHED, if you want to run other evals, change this parameter
eval_requests: list[EvalRequest] = get_eval_requests(
job_status=current_finished_status, hf_repo=QUEUE_REPO, local_dir=EVAL_REQUESTS_PATH_BACKEND
)
# Sort the evals by priority (first submitted first run)
eval_requests: list[EvalRequest] = sort_models_by_priority(api=API, models=eval_requests)
# XXX
# eval_requests = [r for r in eval_requests if 'neo-1.3B' in r.model]
import random
random.shuffle(eval_requests)
from src.leaderboard.read_evals import get_raw_eval_results
eval_results: list[EvalResult] = get_raw_eval_results(EVAL_RESULTS_PATH_BACKEND, EVAL_REQUESTS_PATH_BACKEND)
result_name_to_request = {request_to_result_name(r): r for r in eval_requests}
result_name_to_result = {r.eval_name: r for r in eval_results}
for eval_request in eval_requests:
result_name: str = request_to_result_name(eval_request)
# Check the corresponding result
from typing import Optional
eval_result: Optional[EvalResult] = (
result_name_to_result[result_name] if result_name in result_name_to_result else None
)
# Iterate over tasks and, if we do not have results for a task, run the relevant evaluations
for task in TASKS_HARNESS:
task_name = task.benchmark
if eval_result is None or task_name not in eval_result.results:
eval_request: EvalRequest = result_name_to_request[result_name]
# print(eval_result)
print(result_name, "is incomplete -- missing task:", task_name, eval_result, eval_request.likes)
if __name__ == "__main__":
res = process_finished_requests()