|
import glob |
|
import json |
|
from dataclasses import dataclass |
|
from typing import Optional |
|
|
|
from huggingface_hub import HfApi, snapshot_download |
|
|
|
from src.utils import my_snapshot_download |
|
|
|
|
|
@dataclass |
|
class EvalRequest: |
|
model: str |
|
private: bool |
|
status: str |
|
json_filepath: str |
|
weight_type: str = "Original" |
|
model_type: str = "" |
|
inference_framework: str = "hf-chat" |
|
precision: str = "" |
|
base_model: Optional[str] = None |
|
revision: str = "main" |
|
submitted_time: Optional[str] = ( |
|
"2022-05-18T11:40:22.519222" |
|
) |
|
model_type: Optional[str] = None |
|
likes: Optional[int] = 0 |
|
params: Optional[int] = None |
|
license: Optional[str] = "" |
|
batch_size: Optional[int] = 1 |
|
gpu_type: Optional[str] = "NVIDIA-A100-PCIe-80GB" |
|
|
|
def get_model_args(self) -> str: |
|
model_args = f"pretrained={self.model},revision={self.revision},parallelize=True" |
|
model_args += ",trust_remote_code=True,device_map=auto" |
|
if self.precision in ["float16", "float32", "bfloat16"]: |
|
model_args += f",dtype={self.precision}" |
|
|
|
|
|
|
|
elif self.precision == "4bit": |
|
model_args += ",load_in_4bit=True" |
|
|
|
|
|
|
|
elif self.precision == "8bit": |
|
model_args += ",load_in_8bit=True" |
|
else: |
|
raise Exception(f"Unknown precision {self.precision}.") |
|
return model_args |
|
|
|
|
|
def set_eval_request(api: HfApi, eval_request: EvalRequest, set_to_status: str, hf_repo: str, local_dir: str): |
|
"""Updates a given eval request with its new status on the hub (running, completed, failed, ...)""" |
|
json_filepath = eval_request.json_filepath |
|
|
|
with open(json_filepath) as fp: |
|
data = json.load(fp) |
|
|
|
data["status"] = set_to_status |
|
|
|
with open(json_filepath, "w") as f: |
|
f.write(json.dumps(data)) |
|
|
|
api.upload_file( |
|
path_or_fileobj=json_filepath, |
|
path_in_repo=json_filepath.replace(local_dir, ""), |
|
repo_id=hf_repo, |
|
repo_type="dataset", |
|
) |
|
|
|
|
|
def get_eval_requests(job_status: list, local_dir: str, hf_repo: str, do_download: bool = True) -> list[EvalRequest]: |
|
"""Get all pending evaluation requests and return a list in which private |
|
models appearing first, followed by public models sorted by the number of |
|
likes. |
|
|
|
Returns: |
|
`list[EvalRequest]`: a list of model info dicts. |
|
""" |
|
if do_download: |
|
my_snapshot_download( |
|
repo_id=hf_repo, revision="main", local_dir=local_dir, repo_type="dataset", max_workers=60 |
|
) |
|
|
|
json_files = glob.glob(f"{local_dir}/**/*.json", recursive=True) |
|
|
|
eval_requests = [] |
|
for json_filepath in json_files: |
|
with open(json_filepath) as fp: |
|
data = json.load(fp) |
|
if data["status"] in job_status: |
|
|
|
|
|
data["json_filepath"] = json_filepath |
|
|
|
if "job_id" in data: |
|
del data["job_id"] |
|
|
|
eval_request = EvalRequest(**data) |
|
eval_requests.append(eval_request) |
|
|
|
return eval_requests |
|
|
|
|
|
def check_completed_evals( |
|
api: HfApi, |
|
hf_repo: str, |
|
local_dir: str, |
|
checked_status: str, |
|
completed_status: str, |
|
failed_status: str, |
|
hf_repo_results: str, |
|
local_dir_results: str, |
|
): |
|
"""Checks if the currently running evals are completed, if yes, update their status on the hub.""" |
|
my_snapshot_download( |
|
repo_id=hf_repo_results, revision="main", local_dir=local_dir_results, repo_type="dataset", max_workers=60 |
|
) |
|
|
|
running_evals = get_eval_requests([checked_status], hf_repo=hf_repo, local_dir=local_dir) |
|
|
|
for eval_request in running_evals: |
|
model = eval_request.model |
|
print("====================================") |
|
print(f"Checking {model}") |
|
|
|
output_path = model |
|
output_file = f"{local_dir_results}/{output_path}/results*.json" |
|
output_file_exists = len(glob.glob(output_file)) > 0 |
|
|
|
if output_file_exists: |
|
print(f"EXISTS output file exists for {model} setting it to {completed_status}") |
|
set_eval_request(api, eval_request, completed_status, hf_repo, local_dir) |
|
|