abdullahmubeen10's picture
Update Demo.py
1e880f8 verified
import streamlit as st
import sparknlp
import os
import pandas as pd
from sparknlp.base import *
from sparknlp.annotator import *
from pyspark.ml import Pipeline
from sparknlp.pretrained import PretrainedPipeline
# Page configuration
st.set_page_config(
layout="wide",
initial_sidebar_state="auto"
)
# CSS for styling
st.markdown("""
<style>
.main-title {
font-size: 36px;
color: #4A90E2;
font-weight: bold;
text-align: center;
}
.section p, .section ul {
color: #666666;
}
</style>
""", unsafe_allow_html=True)
@st.cache_resource
def init_spark():
return sparknlp.start()
@st.cache_resource
def create_pipeline(model):
document = DocumentAssembler()\
.setInputCol("text")\
.setOutputCol("document")
embeddings = BertSentenceEmbeddings\
.pretrained('labse', 'xx') \
.setInputCols(["document"])\
.setOutputCol("sentence_embeddings")
sentimentClassifier = ClassifierDLModel.pretrained("classifierdl_bert_sentiment", "fr") \
.setInputCols(["sentence_embeddings"]) \
.setOutputCol("class_")
nlpPipeline = Pipeline(
stages=[
document,
embeddings,
sentimentClassifier])
return nlpPipeline
def fit_data(pipeline, data):
empty_df = spark.createDataFrame([['']]).toDF('text')
pipeline_model = pipeline.fit(empty_df)
model = LightPipeline(pipeline_model)
results = model.fullAnnotate(data)[0]
return results['class_'][0].result
# Set up the page layout
st.markdown('<div class="main-title">State-of-the-Art French Sentiment Detection with Spark NLP</div>', unsafe_allow_html=True)
# Sidebar content
model = st.sidebar.selectbox(
"Choose the pretrained model",
["classifierdl_bert_sentiment"],
help="For more info about the models visit: https://sparknlp.org/models"
)
# Reference notebook link in sidebar
link = """
<a href="https://colab.research.google.com/github/JohnSnowLabs/spark-nlp-workshop/blob/master/tutorials/streamlit_notebooks/CLASSIFICATION_Fr_Sentiment.ipynb">
<img src="https://colab.research.google.com/assets/colab-badge.svg" style="zoom: 1.3" alt="Open In Colab"/>
</a>
"""
st.sidebar.markdown('Reference notebook:')
st.sidebar.markdown(link, unsafe_allow_html=True)
# Load examples
examples = [
"Jeu et championnat pas assez excitants ? Devez-vous vérifier l'arbitre vidéo maintenant? Je suis horrifié, pensa-t-il, il ne devrait répondre que s'il a fait des erreurs flagrantes. Le football n'est plus amusant.",
"J'ai raté le podcast werder hier mercredi. À quelle vitesse vous vous habituez à quelque chose et vous l'attendez avec impatience. Merci à Plainsman pour les bonnes interviews et la perspicacité dans les coulisses du werderbremen. Passez de bonnes vacances d'hiver !",
"Les scènes s'enchaînent de manière saccadée, les dialogues sont théâtraux, le jeu des acteurs ne transcende pas franchement le film. Seule la musique de Vivaldi sauve le tout. Belle déception.",
"Je n'aime pas l'arbitre parce qu'il est empoisonné !",
"ManCity Guardiola et sa bande, vous êtes des connards. Je viens de perdre une fortune à cause de ta dette envers tes Bavarois là-bas."
]
selected_text = st.selectbox("Select a sample", examples)
custom_input = st.text_input("Try it for yourself!")
if custom_input:
selected_text = custom_input
elif selected_text:
selected_text = selected_text
st.subheader('Selected Text')
st.write(selected_text)
# Initialize Spark and create pipeline
spark = init_spark()
pipeline = create_pipeline(model)
output = fit_data(pipeline, selected_text)
# Display output sentence
if output.lower() in ['pos', 'positive']:
st.markdown("""<h3>This seems like a <span style="color: green">{}</span> text. <span style="font-size:35px;">&#128515;</span></h3>""".format('positive'), unsafe_allow_html=True)
elif output.lower() in ['neg', 'negative']:
st.markdown("""<h3>This seems like a <span style="color: red">{}</span> text. <span style="font-size:35px;">&#128544;</span?</h3>""".format('negative'), unsafe_allow_html=True)