aemin commited on
Commit
c89faf6
·
1 Parent(s): c4d15fc

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +8 -6
app.py CHANGED
@@ -75,21 +75,21 @@ selected_model = st.sidebar.selectbox("", model_name)
75
 
76
  if selected_model == "nerdl_fewnerd_100d":
77
  app_title= "Detect up to 8 entity types in general domain texts"
78
- app_description= "Named Entity Recognition model aimed to detect up to 8 entity types from general domain texts. This model was trained on the Few-NERD/inter public dataset using Spark NLP, and it is available in Spark NLP Models hub (https://nlp.johnsnowlabs.com/models)"
79
  st.title(app_title)
80
  st.markdown("<h2>"+app_description+"</h2>" , unsafe_allow_html=True)
81
  st.markdown("**`PERSON`** **,** **`ORGANIZATION`** **,** **`LOCATION`** **,** **`ART`** **,** **`BUILDING`** **,** **`PRODUCT`** **,** **`EVENT`** **,** **`OTHER`**", unsafe_allow_html=True)
82
 
83
  elif selected_model== "ner_conll_elmo":
84
  app_title= "Detect up to 4 entity types in general domain texts"
85
- app_description= "Named Entity Recognition model aimed to detect up to 4 entity types from general domain texts. This model was trained on the CoNLL 2003 text corpu using Spark NLP, and it is available in Spark NLP Models hub (https://nlp.johnsnowlabs.com/models)"
86
  st.title(app_title)
87
  st.markdown("<h2>"+app_description+"</h2>" , unsafe_allow_html=True)
88
  st.markdown("**`PER`** **,** **`LOC`** **,** **`ORG`** **,** **`MISC` **", unsafe_allow_html=True)
89
 
90
  elif selected_model== "ner_mit_movie_complex_distilbert_base_cased":
91
  app_title= "Detect up to 12 entity types in movie domain texts"
92
- app_description= "Named Entity Recognition model aimed to detect up to 12 entity types from movie domain texts. This model was trained on the MIT Movie Corpus complex queries dataset to detect movie trivia using Spark NLP, and it is available in Spark NLP Models hub (https://nlp.johnsnowlabs.com/models)"
93
  st.title(app_title)
94
  st.markdown("<h2>"+app_description+"</h2>" , unsafe_allow_html=True)
95
  st.markdown("""**`ACTOR`** **,** **`AWARD`** **,** **`CHARACTER_NAME`** **,** **`DIRECTOR`** **,** **`GENRE`** **,** **`OPINION`** **,** **`ORIGIN`** **,** **`PLOT`**,
@@ -98,14 +98,14 @@ elif selected_model== "ner_mit_movie_complex_distilbert_base_cased":
98
 
99
  elif selected_model=="ner_conll_albert_large_uncased":
100
  app_title= "Detect up to 4 entity types in general domain texts"
101
- app_description= "Named Entity Recognition model aimed to detect up to 4 entity types from general domain texts. This model was trained on the CoNLL 2003 text corpus using Spark NLP, and it is available in Spark NLP Models hub (https://nlp.johnsnowlabs.com/models)"
102
  st.title(app_title)
103
  st.markdown("<h2>"+app_description+"</h2>" , unsafe_allow_html=True)
104
  st.markdown("**`PER`** **,** **`LOC`** **,** **`ORG`** **,** **`MISC` **", unsafe_allow_html=True)
105
 
106
  elif selected_model=="onto_100":
107
  app_title= "Detect up to 18 entity types in general domain texts"
108
- app_description= "Named Entity Recognition model aimed to detect up to 18 entity types from general domain texts. This model was trained with GloVe 100d word embeddings using Spark NLP, so be sure to use same embeddings in the pipeline. It is available in Spark NLP Models hub (https://nlp.johnsnowlabs.com/models)"
109
  st.title(app_title)
110
  st.markdown("<h2>"+app_description+"</h2>" , unsafe_allow_html=True)
111
  st.markdown("""**`CARDINAL`** **,** **`EVENT`** **,** **`WORK_OF_ART`** **,** **`ORG`** **,** **`DATE`** **,** **`GPE`** **,** **`PERSON`** **,** **`PRODUCT`**,
@@ -308,4 +308,6 @@ st.sidebar.title('')
308
  st.sidebar.markdown('Try it yourself:')
309
  st.sidebar.markdown(try_link, unsafe_allow_html=True)
310
 
311
-
 
 
 
75
 
76
  if selected_model == "nerdl_fewnerd_100d":
77
  app_title= "Detect up to 8 entity types in general domain texts"
78
+ app_description= "Named Entity Recognition model aimed to detect up to 8 entity types from general domain texts. This model was trained on the Few-NERD/inter public dataset using Spark NLP, and it is available in Spark NLP Models hub. "
79
  st.title(app_title)
80
  st.markdown("<h2>"+app_description+"</h2>" , unsafe_allow_html=True)
81
  st.markdown("**`PERSON`** **,** **`ORGANIZATION`** **,** **`LOCATION`** **,** **`ART`** **,** **`BUILDING`** **,** **`PRODUCT`** **,** **`EVENT`** **,** **`OTHER`**", unsafe_allow_html=True)
82
 
83
  elif selected_model== "ner_conll_elmo":
84
  app_title= "Detect up to 4 entity types in general domain texts"
85
+ app_description= "Named Entity Recognition model aimed to detect up to 4 entity types from general domain texts. This model was trained on the CoNLL 2003 text corpus using Spark NLP, and it is available in Spark NLP Models hub. "
86
  st.title(app_title)
87
  st.markdown("<h2>"+app_description+"</h2>" , unsafe_allow_html=True)
88
  st.markdown("**`PER`** **,** **`LOC`** **,** **`ORG`** **,** **`MISC` **", unsafe_allow_html=True)
89
 
90
  elif selected_model== "ner_mit_movie_complex_distilbert_base_cased":
91
  app_title= "Detect up to 12 entity types in movie domain texts"
92
+ app_description= "Named Entity Recognition model aimed to detect up to 12 entity types from movie domain texts. This model was trained on the MIT Movie Corpus complex queries dataset to detect movie trivia using Spark NLP, and it is available in Spark NLP Models hub. "
93
  st.title(app_title)
94
  st.markdown("<h2>"+app_description+"</h2>" , unsafe_allow_html=True)
95
  st.markdown("""**`ACTOR`** **,** **`AWARD`** **,** **`CHARACTER_NAME`** **,** **`DIRECTOR`** **,** **`GENRE`** **,** **`OPINION`** **,** **`ORIGIN`** **,** **`PLOT`**,
 
98
 
99
  elif selected_model=="ner_conll_albert_large_uncased":
100
  app_title= "Detect up to 4 entity types in general domain texts"
101
+ app_description= "Named Entity Recognition model aimed to detect up to 4 entity types from general domain texts. This model was trained on the CoNLL 2003 text corpus using Spark NLP, and it is available in Spark NLP Models hub. "
102
  st.title(app_title)
103
  st.markdown("<h2>"+app_description+"</h2>" , unsafe_allow_html=True)
104
  st.markdown("**`PER`** **,** **`LOC`** **,** **`ORG`** **,** **`MISC` **", unsafe_allow_html=True)
105
 
106
  elif selected_model=="onto_100":
107
  app_title= "Detect up to 18 entity types in general domain texts"
108
+ app_description= "Named Entity Recognition model aimed to detect up to 18 entity types from general domain texts. This model was trained with GloVe 100d word embeddings using Spark NLP, so be sure to use same embeddings in the pipeline. It is available in Spark NLP Models hub. "
109
  st.title(app_title)
110
  st.markdown("<h2>"+app_description+"</h2>" , unsafe_allow_html=True)
111
  st.markdown("""**`CARDINAL`** **,** **`EVENT`** **,** **`WORK_OF_ART`** **,** **`ORG`** **,** **`DATE`** **,** **`GPE`** **,** **`PERSON`** **,** **`PRODUCT`**,
 
308
  st.sidebar.markdown('Try it yourself:')
309
  st.sidebar.markdown(try_link, unsafe_allow_html=True)
310
 
311
+ st.sidebar.markdown("""Want to see more?
312
+ - Check Spark NLP in action, including our Spark NLP for Healthcare & Spark OCR demos at [here](https://www.johnsnowlabs.com/spark-nlp-in-action/#)
313
+ - Check our 4.4K+ models available in Spark NLP Models Hub [here](https://nlp.johnsnowlabs.com/models)""")