Update Demo.py
Browse files
Demo.py
CHANGED
|
@@ -1,141 +1,141 @@
|
|
| 1 |
-
import streamlit as st
|
| 2 |
-
import sparknlp
|
| 3 |
-
import os
|
| 4 |
-
import pandas as pd
|
| 5 |
-
|
| 6 |
-
from sparknlp.base import *
|
| 7 |
-
from sparknlp.annotator import *
|
| 8 |
-
from pyspark.ml import Pipeline
|
| 9 |
-
from sparknlp.pretrained import PretrainedPipeline
|
| 10 |
-
from streamlit_tags import st_tags
|
| 11 |
-
|
| 12 |
-
# Page configuration
|
| 13 |
-
st.set_page_config(
|
| 14 |
-
layout="wide",
|
| 15 |
-
initial_sidebar_state="auto"
|
| 16 |
-
)
|
| 17 |
-
|
| 18 |
-
# CSS for styling
|
| 19 |
-
st.markdown("""
|
| 20 |
-
<style>
|
| 21 |
-
.main-title {
|
| 22 |
-
font-size: 36px;
|
| 23 |
-
color: #4A90E2;
|
| 24 |
-
font-weight: bold;
|
| 25 |
-
text-align: center;
|
| 26 |
-
}
|
| 27 |
-
.section {
|
| 28 |
-
background-color: #f9f9f9;
|
| 29 |
-
padding: 10px;
|
| 30 |
-
border-radius: 10px;
|
| 31 |
-
margin-top: 10px;
|
| 32 |
-
}
|
| 33 |
-
.section p, .section ul {
|
| 34 |
-
color: #666666;
|
| 35 |
-
}
|
| 36 |
-
</style>
|
| 37 |
-
""", unsafe_allow_html=True)
|
| 38 |
-
|
| 39 |
-
@st.cache_resource
|
| 40 |
-
def init_spark():
|
| 41 |
-
return sparknlp.start()
|
| 42 |
-
|
| 43 |
-
@st.cache_resource
|
| 44 |
-
def create_pipeline(model, labels):
|
| 45 |
-
image_assembler = ImageAssembler() \
|
| 46 |
-
.setInputCol("image") \
|
| 47 |
-
.setOutputCol("image_assembler")
|
| 48 |
-
|
| 49 |
-
imageClassifier = CLIPForZeroShotClassification \
|
| 50 |
-
.pretrained() \
|
| 51 |
-
.setInputCols(["image_assembler"]) \
|
| 52 |
-
.setOutputCol("label") \
|
| 53 |
-
.setCandidateLabels(labels)
|
| 54 |
-
|
| 55 |
-
pipeline = Pipeline(stages=[
|
| 56 |
-
image_assembler,
|
| 57 |
-
imageClassifier,
|
| 58 |
-
])
|
| 59 |
-
return pipeline
|
| 60 |
-
|
| 61 |
-
def fit_data(pipeline, data):
|
| 62 |
-
model = pipeline.fit(data)
|
| 63 |
-
light_pipeline = LightPipeline(model)
|
| 64 |
-
annotations_result = light_pipeline.fullAnnotateImage(data)
|
| 65 |
-
return annotations_result[0]['label'][0].result
|
| 66 |
-
|
| 67 |
-
def save_uploadedfile(uploadedfile):
|
| 68 |
-
filepath = os.path.join(IMAGE_FILE_PATH, uploadedfile.name)
|
| 69 |
-
with open(filepath, "wb") as f:
|
| 70 |
-
if hasattr(uploadedfile, 'getbuffer'):
|
| 71 |
-
f.write(uploadedfile.getbuffer())
|
| 72 |
-
else:
|
| 73 |
-
f.write(uploadedfile.read())
|
| 74 |
-
|
| 75 |
-
# Sidebar content
|
| 76 |
-
model = st.sidebar.selectbox(
|
| 77 |
-
"Choose the pretrained model",
|
| 78 |
-
["CLIPForZeroShotClassification"],
|
| 79 |
-
help="For more info about the models visit: https://sparknlp.org/models"
|
| 80 |
-
)
|
| 81 |
-
|
| 82 |
-
# Set up the page layout
|
| 83 |
-
st.markdown(f'<div class="main-title">CLIPForZeroShotClassification</div>', unsafe_allow_html=True)
|
| 84 |
-
# st.markdown(f'<div class="section"><p>{sub_title}</p></div>', unsafe_allow_html=True)
|
| 85 |
-
|
| 86 |
-
# Reference notebook link in sidebar
|
| 87 |
-
link = """
|
| 88 |
-
<a href="https://github.com/JohnSnowLabs/spark-nlp/blob/master/examples/python/annotation/image/CLIPForZeroShotClassification.ipynb">
|
| 89 |
-
<img src="https://colab.research.google.com/assets/colab-badge.svg" style="zoom: 1.3" alt="Open In Colab"/>
|
| 90 |
-
</a>
|
| 91 |
-
"""
|
| 92 |
-
st.sidebar.markdown('Reference notebook:')
|
| 93 |
-
st.sidebar.markdown(link, unsafe_allow_html=True)
|
| 94 |
-
|
| 95 |
-
# Load examples
|
| 96 |
-
IMAGE_FILE_PATH = "
|
| 97 |
-
image_files = sorted([file for file in os.listdir(IMAGE_FILE_PATH) if file.split('.')[-1]=='png' or file.split('.')[-1]=='jpg' or file.split('.')[-1]=='JPEG' or file.split('.')[-1]=='jpeg'])
|
| 98 |
-
|
| 99 |
-
img_options = st.selectbox("Select an image", image_files)
|
| 100 |
-
uploadedfile = st.file_uploader("Try it for yourself!")
|
| 101 |
-
|
| 102 |
-
if uploadedfile:
|
| 103 |
-
file_details = {"FileName":uploadedfile.name,"FileType":uploadedfile.type}
|
| 104 |
-
save_uploadedfile(uploadedfile)
|
| 105 |
-
selected_image = f"{IMAGE_FILE_PATH}/{uploadedfile.name}"
|
| 106 |
-
elif img_options:
|
| 107 |
-
selected_image = f"{IMAGE_FILE_PATH}/{img_options}"
|
| 108 |
-
|
| 109 |
-
candidateLabels = [
|
| 110 |
-
"a photo of a bird",
|
| 111 |
-
"a photo of a cat",
|
| 112 |
-
"a photo of a dog",
|
| 113 |
-
"a photo of a hen",
|
| 114 |
-
"a photo of a hippo",
|
| 115 |
-
"a photo of a room",
|
| 116 |
-
"a photo of a tractor",
|
| 117 |
-
"a photo of an ostrich",
|
| 118 |
-
"a photo of an ox"]
|
| 119 |
-
|
| 120 |
-
lables = st_tags(
|
| 121 |
-
label='Select labels',
|
| 122 |
-
text='Press enter to add more',
|
| 123 |
-
value=candidateLabels,
|
| 124 |
-
maxtags = -1)
|
| 125 |
-
|
| 126 |
-
st.subheader('Classified Image')
|
| 127 |
-
|
| 128 |
-
image_size = st.slider('Image Size', 400, 1000, value=400, step = 100)
|
| 129 |
-
|
| 130 |
-
try:
|
| 131 |
-
st.image(f"{IMAGE_FILE_PATH}/{selected_image}", width=image_size)
|
| 132 |
-
except:
|
| 133 |
-
st.image(selected_image, width=image_size)
|
| 134 |
-
|
| 135 |
-
st.subheader('Classification')
|
| 136 |
-
|
| 137 |
-
init_spark()
|
| 138 |
-
Pipeline = create_pipeline(model, lables)
|
| 139 |
-
output = fit_data(Pipeline, selected_image)
|
| 140 |
-
|
| 141 |
st.markdown(f'This document has been classified as : **{output}**')
|
|
|
|
| 1 |
+
import streamlit as st
|
| 2 |
+
import sparknlp
|
| 3 |
+
import os
|
| 4 |
+
import pandas as pd
|
| 5 |
+
|
| 6 |
+
from sparknlp.base import *
|
| 7 |
+
from sparknlp.annotator import *
|
| 8 |
+
from pyspark.ml import Pipeline
|
| 9 |
+
from sparknlp.pretrained import PretrainedPipeline
|
| 10 |
+
from streamlit_tags import st_tags
|
| 11 |
+
|
| 12 |
+
# Page configuration
|
| 13 |
+
st.set_page_config(
|
| 14 |
+
layout="wide",
|
| 15 |
+
initial_sidebar_state="auto"
|
| 16 |
+
)
|
| 17 |
+
|
| 18 |
+
# CSS for styling
|
| 19 |
+
st.markdown("""
|
| 20 |
+
<style>
|
| 21 |
+
.main-title {
|
| 22 |
+
font-size: 36px;
|
| 23 |
+
color: #4A90E2;
|
| 24 |
+
font-weight: bold;
|
| 25 |
+
text-align: center;
|
| 26 |
+
}
|
| 27 |
+
.section {
|
| 28 |
+
background-color: #f9f9f9;
|
| 29 |
+
padding: 10px;
|
| 30 |
+
border-radius: 10px;
|
| 31 |
+
margin-top: 10px;
|
| 32 |
+
}
|
| 33 |
+
.section p, .section ul {
|
| 34 |
+
color: #666666;
|
| 35 |
+
}
|
| 36 |
+
</style>
|
| 37 |
+
""", unsafe_allow_html=True)
|
| 38 |
+
|
| 39 |
+
@st.cache_resource
|
| 40 |
+
def init_spark():
|
| 41 |
+
return sparknlp.start()
|
| 42 |
+
|
| 43 |
+
@st.cache_resource
|
| 44 |
+
def create_pipeline(model, labels):
|
| 45 |
+
image_assembler = ImageAssembler() \
|
| 46 |
+
.setInputCol("image") \
|
| 47 |
+
.setOutputCol("image_assembler")
|
| 48 |
+
|
| 49 |
+
imageClassifier = CLIPForZeroShotClassification \
|
| 50 |
+
.pretrained() \
|
| 51 |
+
.setInputCols(["image_assembler"]) \
|
| 52 |
+
.setOutputCol("label") \
|
| 53 |
+
.setCandidateLabels(labels)
|
| 54 |
+
|
| 55 |
+
pipeline = Pipeline(stages=[
|
| 56 |
+
image_assembler,
|
| 57 |
+
imageClassifier,
|
| 58 |
+
])
|
| 59 |
+
return pipeline
|
| 60 |
+
|
| 61 |
+
def fit_data(pipeline, data):
|
| 62 |
+
model = pipeline.fit(data)
|
| 63 |
+
light_pipeline = LightPipeline(model)
|
| 64 |
+
annotations_result = light_pipeline.fullAnnotateImage(data)
|
| 65 |
+
return annotations_result[0]['label'][0].result
|
| 66 |
+
|
| 67 |
+
def save_uploadedfile(uploadedfile):
|
| 68 |
+
filepath = os.path.join(IMAGE_FILE_PATH, uploadedfile.name)
|
| 69 |
+
with open(filepath, "wb") as f:
|
| 70 |
+
if hasattr(uploadedfile, 'getbuffer'):
|
| 71 |
+
f.write(uploadedfile.getbuffer())
|
| 72 |
+
else:
|
| 73 |
+
f.write(uploadedfile.read())
|
| 74 |
+
|
| 75 |
+
# Sidebar content
|
| 76 |
+
model = st.sidebar.selectbox(
|
| 77 |
+
"Choose the pretrained model",
|
| 78 |
+
["CLIPForZeroShotClassification"],
|
| 79 |
+
help="For more info about the models visit: https://sparknlp.org/models"
|
| 80 |
+
)
|
| 81 |
+
|
| 82 |
+
# Set up the page layout
|
| 83 |
+
st.markdown(f'<div class="main-title">CLIPForZeroShotClassification</div>', unsafe_allow_html=True)
|
| 84 |
+
# st.markdown(f'<div class="section"><p>{sub_title}</p></div>', unsafe_allow_html=True)
|
| 85 |
+
|
| 86 |
+
# Reference notebook link in sidebar
|
| 87 |
+
link = """
|
| 88 |
+
<a href="https://github.com/JohnSnowLabs/spark-nlp/blob/master/examples/python/annotation/image/CLIPForZeroShotClassification.ipynb">
|
| 89 |
+
<img src="https://colab.research.google.com/assets/colab-badge.svg" style="zoom: 1.3" alt="Open In Colab"/>
|
| 90 |
+
</a>
|
| 91 |
+
"""
|
| 92 |
+
st.sidebar.markdown('Reference notebook:')
|
| 93 |
+
st.sidebar.markdown(link, unsafe_allow_html=True)
|
| 94 |
+
|
| 95 |
+
# Load examples
|
| 96 |
+
IMAGE_FILE_PATH = "input"
|
| 97 |
+
image_files = sorted([file for file in os.listdir(IMAGE_FILE_PATH) if file.split('.')[-1]=='png' or file.split('.')[-1]=='jpg' or file.split('.')[-1]=='JPEG' or file.split('.')[-1]=='jpeg'])
|
| 98 |
+
|
| 99 |
+
img_options = st.selectbox("Select an image", image_files)
|
| 100 |
+
uploadedfile = st.file_uploader("Try it for yourself!")
|
| 101 |
+
|
| 102 |
+
if uploadedfile:
|
| 103 |
+
file_details = {"FileName":uploadedfile.name,"FileType":uploadedfile.type}
|
| 104 |
+
save_uploadedfile(uploadedfile)
|
| 105 |
+
selected_image = f"{IMAGE_FILE_PATH}/{uploadedfile.name}"
|
| 106 |
+
elif img_options:
|
| 107 |
+
selected_image = f"{IMAGE_FILE_PATH}/{img_options}"
|
| 108 |
+
|
| 109 |
+
candidateLabels = [
|
| 110 |
+
"a photo of a bird",
|
| 111 |
+
"a photo of a cat",
|
| 112 |
+
"a photo of a dog",
|
| 113 |
+
"a photo of a hen",
|
| 114 |
+
"a photo of a hippo",
|
| 115 |
+
"a photo of a room",
|
| 116 |
+
"a photo of a tractor",
|
| 117 |
+
"a photo of an ostrich",
|
| 118 |
+
"a photo of an ox"]
|
| 119 |
+
|
| 120 |
+
lables = st_tags(
|
| 121 |
+
label='Select labels',
|
| 122 |
+
text='Press enter to add more',
|
| 123 |
+
value=candidateLabels,
|
| 124 |
+
maxtags = -1)
|
| 125 |
+
|
| 126 |
+
st.subheader('Classified Image')
|
| 127 |
+
|
| 128 |
+
image_size = st.slider('Image Size', 400, 1000, value=400, step = 100)
|
| 129 |
+
|
| 130 |
+
try:
|
| 131 |
+
st.image(f"{IMAGE_FILE_PATH}/{selected_image}", width=image_size)
|
| 132 |
+
except:
|
| 133 |
+
st.image(selected_image, width=image_size)
|
| 134 |
+
|
| 135 |
+
st.subheader('Classification')
|
| 136 |
+
|
| 137 |
+
init_spark()
|
| 138 |
+
Pipeline = create_pipeline(model, lables)
|
| 139 |
+
output = fit_data(Pipeline, selected_image)
|
| 140 |
+
|
| 141 |
st.markdown(f'This document has been classified as : **{output}**')
|