Spaces:
Sleeping
Sleeping
import streamlit as st | |
import sparknlp | |
import os | |
import pandas as pd | |
from sparknlp.base import * | |
from sparknlp.annotator import * | |
from pyspark.ml import Pipeline | |
from sparknlp.pretrained import PretrainedPipeline | |
from annotated_text import annotated_text | |
# Page configuration | |
st.set_page_config( | |
layout="wide", | |
initial_sidebar_state="auto" | |
) | |
# CSS for styling | |
st.markdown(""" | |
<style> | |
.main-title { | |
font-size: 36px; | |
color: #4A90E2; | |
font-weight: bold; | |
text-align: center; | |
} | |
.section { | |
background-color: #f9f9f9; | |
padding: 10px; | |
border-radius: 10px; | |
margin-top: 10px; | |
} | |
.section p, .section ul { | |
color: #666666; | |
} | |
</style> | |
""", unsafe_allow_html=True) | |
def init_spark(): | |
return sparknlp.start() | |
def create_pipeline(model): | |
documentAssembler = DocumentAssembler()\ | |
.setInputCol("text")\ | |
.setOutputCol("document") | |
sentenceDetector = SentenceDetectorDLModel.pretrained("sentence_detector_dl", "xx")\ | |
.setInputCols(["document"])\ | |
.setOutputCol("sentence") | |
tokenizer = Tokenizer()\ | |
.setInputCols(["sentence"])\ | |
.setOutputCol("token") | |
ner_converter = NerConverter()\ | |
.setInputCols(["sentence", "token", "ner"])\ | |
.setOutputCol("ner_chunk") | |
if model == 'xlm_roberta_large_token_classifier_masakhaner': | |
tokenClassifier = XlmRoBertaForTokenClassification.pretrained("xlm_roberta_large_token_classifier_masakhaner", "xx")\ | |
.setInputCols(["sentence",'token'])\ | |
.setOutputCol("ner") | |
else: | |
tokenClassifier = DistilBertForTokenClassification.pretrained("distilbert_base_token_classifier_masakhaner", "xx")\ | |
.setInputCols(["sentence",'token'])\ | |
.setOutputCol("ner") | |
nlpPipeline = Pipeline(stages=[documentAssembler, sentenceDetector, tokenizer, tokenClassifier, ner_converter]) | |
return nlpPipeline | |
def fit_data(pipeline, data): | |
empty_df = spark.createDataFrame([['']]).toDF('text') | |
pipeline_model = pipeline.fit(empty_df) | |
model = LightPipeline(pipeline_model) | |
result = model.fullAnnotate(data) | |
return result | |
def annotate(data): | |
document, chunks, labels = data["Document"], data["NER Chunk"], data["NER Label"] | |
annotated_words = [] | |
for chunk, label in zip(chunks, labels): | |
parts = document.split(chunk, 1) | |
if parts[0]: | |
annotated_words.append(parts[0]) | |
annotated_words.append((chunk, label)) | |
document = parts[1] | |
if document: | |
annotated_words.append(document) | |
annotated_text(*annotated_words) | |
# Set up the page layout | |
st.markdown('<div class="main-title">Recognize entities in 10 African languages</div>', unsafe_allow_html=True) | |
st.markdown(""" | |
<div class="section"> | |
<p>This model carries out Name Entity Recognition on 10 African languages (Amharic, Hausa, Igbo, Kinyarwanda, Luganda, Nigerian, Pidgin, Swahilu, Wolof, and Yorùbá).</p> | |
</div> | |
""", unsafe_allow_html=True) | |
# Sidebar content | |
model = st.sidebar.selectbox( | |
"Choose the pretrained model", | |
["xlm_roberta_large_token_classifier_masakhaner", "distilbert_base_token_classifier_masakhaner"], | |
help="For more info about the models visit: https://sparknlp.org/models" | |
) | |
language = st.sidebar.selectbox( | |
"Choose the pretrained model", | |
["Amharic", "Hausa", "Igbo", "Kinyarwanda", "Luganda", "Nigerian", "Pidgin", "Swahilu", "Wolof", "Yorùbá"], | |
help="For more info about the models visit: https://sparknlp.org/models" | |
) | |
try: | |
labels_set = set() | |
for i in results['NER Chunk'].values: | |
labels_set.add(results["NER Label"][i]) | |
labels_set = list(labels_set) | |
labels = st.sidebar.multiselect("Entity labels", options=labels_set, default=list(labels_set)) | |
NER_labs = ['PER', 'ORG', 'LOC', 'DATE'] | |
NER_exp = ['People, including fictional.', 'Companies, agencies, institutions, etc.', 'Countries, cities, states.', 'Date, Year'] | |
NER_dict = dict(zip(NER_labs, NER_exp)) | |
show_exp = st.sidebar.checkbox("Explain NER Labels", value=True) | |
if show_exp: | |
t_ner_k = [] | |
t_ner_v = [] | |
for t_lab in labels_set: | |
if t_lab in NER_dict: | |
t_ner_k.append(t_lab) | |
t_ner_v.append(NER_dict[t_lab]) | |
tdf = pd.DataFrame({"NER": t_ner_k, "Meaning": t_ner_v}) | |
tdf.index=['']*len(t_ner_k) | |
st.sidebar.table(tdf) | |
except: | |
pass | |
# Reference notebook link in sidebar | |
link = """ | |
<a href="https://colab.research.google.com/github/JohnSnowLabs/spark-nlp-workshop/blob/master/tutorials/streamlit_notebooks/Ner_masakhaner.ipynb"> | |
<img src="https://colab.research.google.com/assets/colab-badge.svg" style="zoom: 1.3" alt="Open In Colab"/> | |
</a> | |
""" | |
st.sidebar.markdown('Reference notebook:') | |
st.sidebar.markdown(link, unsafe_allow_html=True) | |
# Load examples | |
folder_path = f"inputs/{language}" | |
examples = [ | |
lines[1].strip() | |
for filename in os.listdir(folder_path) | |
if filename.endswith('.txt') | |
for lines in [open(os.path.join(folder_path, filename), 'r', encoding='utf-8').readlines()] | |
if len(lines) >= 2 | |
] | |
selected_text = st.selectbox("Select an example", examples) | |
custom_input = st.text_input("Try it with your own Sentence!") | |
text_to_analyze = custom_input if custom_input else selected_text | |
st.subheader('Full example text') | |
HTML_WRAPPER = """<div class="scroll entities" style="overflow-x: auto; border: 1px solid #e6e9ef; border-radius: 0.25rem; padding: 1rem; margin-bottom: 2.5rem; white-space:pre-wrap">{}</div>""" | |
st.markdown(HTML_WRAPPER.format(text_to_analyze), unsafe_allow_html=True) | |
# Initialize Spark and create pipeline | |
spark = init_spark() | |
pipeline = create_pipeline(model) | |
output = fit_data(pipeline, text_to_analyze) | |
# Display matched sentence | |
st.subheader("Processed output:") | |
results = { | |
'Document': output[0]['document'][0].result, | |
'NER Chunk': [n.result for n in output[0]['ner_chunk']], | |
"NER Label": [n.metadata['entity'] for n in output[0]['ner_chunk']] | |
} | |
annotate(results) | |
with st.expander("View DataFrame"): | |
df = pd.DataFrame({'NER Chunk': results['NER Chunk'], 'NER Label': results['NER Label']}) | |
df.index += 1 | |
st.dataframe(df) | |