Update app.py
Browse files
app.py
CHANGED
@@ -2,6 +2,7 @@ import torch
|
|
2 |
import torchaudio
|
3 |
from sgmse.model import ScoreModel
|
4 |
import gradio as gr
|
|
|
5 |
|
6 |
# Load the pre-trained model
|
7 |
model = ScoreModel.load_from_checkpoint("pretrained_checkpoints/speech_enhancement/train_vb_29nqe0uh_epoch=115.ckpt")
|
@@ -11,12 +12,34 @@ def enhance_speech(audio_file):
|
|
11 |
noisy, sr = torchaudio.load(audio_file)
|
12 |
noisy = noisy.unsqueeze(0) # Add fake batch dimension if needed
|
13 |
|
14 |
-
|
15 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
16 |
|
17 |
# Save the enhanced audio
|
18 |
output_file = 'enhanced_output.wav'
|
19 |
-
torchaudio.save(output_file,
|
20 |
|
21 |
return output_file
|
22 |
|
|
|
2 |
import torchaudio
|
3 |
from sgmse.model import ScoreModel
|
4 |
import gradio as gr
|
5 |
+
from sgmse.util.other import pad_spec
|
6 |
|
7 |
# Load the pre-trained model
|
8 |
model = ScoreModel.load_from_checkpoint("pretrained_checkpoints/speech_enhancement/train_vb_29nqe0uh_epoch=115.ckpt")
|
|
|
12 |
noisy, sr = torchaudio.load(audio_file)
|
13 |
noisy = noisy.unsqueeze(0) # Add fake batch dimension if needed
|
14 |
|
15 |
+
if sr != target_sr:
|
16 |
+
y = torch.tensor(resample(y.numpy(), orig_sr=sr, target_sr=target_sr))
|
17 |
+
|
18 |
+
T_orig = y.size(1)
|
19 |
+
|
20 |
+
# Normalize
|
21 |
+
norm_factor = y.abs().max()
|
22 |
+
y = y / norm_factor
|
23 |
+
|
24 |
+
# Prepare DNN input
|
25 |
+
Y = torch.unsqueeze(model._forward_transform(model._stft(y.to(args.device))), 0)
|
26 |
+
Y = pad_spec(Y, mode=pad_mode)
|
27 |
+
|
28 |
+
# Reverse sampling
|
29 |
+
sampler = model.get_pc_sampler(
|
30 |
+
'reverse_diffusion', args.corrector, Y.to(args.device), N=args.N,
|
31 |
+
corrector_steps=args.corrector_steps, snr=args.snr)
|
32 |
+
sample, _ = sampler()
|
33 |
+
|
34 |
+
# Backward transform in time domain
|
35 |
+
x_hat = model.to_audio(sample.squeeze(), T_orig)
|
36 |
+
|
37 |
+
# Renormalize
|
38 |
+
x_hat = x_hat * norm_factor
|
39 |
|
40 |
# Save the enhanced audio
|
41 |
output_file = 'enhanced_output.wav'
|
42 |
+
torchaudio.save(output_file, x_hat.cpu().numpy(), sr)
|
43 |
|
44 |
return output_file
|
45 |
|