Spaces:
Sleeping
Sleeping
sowbaranika13
commited on
Commit
•
9e4f4db
1
Parent(s):
1c07ac6
Update app.py
Browse files
app.py
CHANGED
@@ -6,9 +6,7 @@ from tensorflow.keras.preprocessing.image import img_to_array
|
|
6 |
import numpy as np
|
7 |
from PIL import Image
|
8 |
import os
|
9 |
-
import requests
|
10 |
|
11 |
-
# Load your model and tokenizer
|
12 |
labels = {
|
13 |
'class': ['amphibia', 'aves', 'invertebrates', 'lacertilia', 'mammalia', 'serpentes', 'testudines'],
|
14 |
'serpentes': ["Butler's Gartersnake", "Dekay's Brownsnake", 'Eastern Gartersnake', 'Eastern Hog-nosed snake', 'Eastern Massasauga', 'Eastern Milksnake', 'Eastern Racer Snake', 'Eastern Ribbonsnake', 'Gray Ratsnake', "Kirtland's Snake", 'Northern Watersnake', 'Plains Gartersnake', 'Red-bellied Snake', 'Smooth Greensnake'],
|
@@ -17,44 +15,26 @@ labels = {
|
|
17 |
'amphibia': ['American Bullfrog', 'American Toad', 'Green Frog', 'Northern Leopard Frog']
|
18 |
}
|
19 |
|
20 |
-
model_url = "https://github.com/sowbaranika1302/ohio_classifier/raw/main/Models/inceptionv3_best_withoutblanks.h5"
|
21 |
-
model_path = "inceptionv3_best_withoutblanks.h5"
|
22 |
|
23 |
-
# Download the model if it doesn't exist locally
|
24 |
-
if not os.path.exists(model_path):
|
25 |
-
response = requests.get(model_url)
|
26 |
-
with open(model_path, 'wb') as f:
|
27 |
-
f.write(response.content)
|
28 |
-
|
29 |
-
# Load the model
|
30 |
-
model = load_model(model_path)
|
31 |
-
|
32 |
-
# Preprocess the image
|
33 |
def preprocess_image(image):
|
34 |
-
img = image.resize((224, 224))
|
35 |
img_array = img_to_array(img)
|
36 |
-
img_array = np.expand_dims(img_array, axis=0)
|
37 |
-
img_array = preprocess_input(img_array)
|
38 |
-
return img_array, img
|
39 |
|
40 |
-
# Function to perform inference
|
41 |
def predict(img):
|
42 |
img_array, resized_img = preprocess_image(img)
|
43 |
-
|
44 |
-
preds = model.predict(img_array)
|
45 |
decoded_preds = np.argmax(preds)
|
46 |
-
|
47 |
-
# Return the prediction and the resized image for display
|
48 |
return resized_img, labels['class'][decoded_preds]
|
49 |
|
50 |
-
# Create the Gradio interface
|
51 |
iface = gr.Interface(
|
52 |
-
fn=predict,
|
53 |
-
|
54 |
-
|
55 |
-
outputs=[gr.Image(type="pil"), gr.Label(label="species_label")], # Output the resized image and prediction
|
56 |
title="Animal Classifier"
|
57 |
)
|
58 |
|
59 |
-
# Launch the Gradio interface
|
60 |
iface.launch()
|
|
|
6 |
import numpy as np
|
7 |
from PIL import Image
|
8 |
import os
|
|
|
9 |
|
|
|
10 |
labels = {
|
11 |
'class': ['amphibia', 'aves', 'invertebrates', 'lacertilia', 'mammalia', 'serpentes', 'testudines'],
|
12 |
'serpentes': ["Butler's Gartersnake", "Dekay's Brownsnake", 'Eastern Gartersnake', 'Eastern Hog-nosed snake', 'Eastern Massasauga', 'Eastern Milksnake', 'Eastern Racer Snake', 'Eastern Ribbonsnake', 'Gray Ratsnake', "Kirtland's Snake", 'Northern Watersnake', 'Plains Gartersnake', 'Red-bellied Snake', 'Smooth Greensnake'],
|
|
|
15 |
'amphibia': ['American Bullfrog', 'American Toad', 'Green Frog', 'Northern Leopard Frog']
|
16 |
}
|
17 |
|
|
|
|
|
18 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
19 |
def preprocess_image(image):
|
20 |
+
img = image.resize((224, 224))
|
21 |
img_array = img_to_array(img)
|
22 |
+
img_array = np.expand_dims(img_array, axis=0)
|
23 |
+
img_array = preprocess_input(img_array)
|
24 |
+
return img_array, img
|
25 |
|
|
|
26 |
def predict(img):
|
27 |
img_array, resized_img = preprocess_image(img)
|
28 |
+
model = load_model("inceptionv3_class.h5")
|
29 |
+
preds = model.predict(img_array)
|
30 |
decoded_preds = np.argmax(preds)
|
|
|
|
|
31 |
return resized_img, labels['class'][decoded_preds]
|
32 |
|
|
|
33 |
iface = gr.Interface(
|
34 |
+
fn=predict,
|
35 |
+
inputs=gr.Image(type="pil"),
|
36 |
+
outputs=[gr.Image(type="pil"), gr.Label(label="species_label")],
|
|
|
37 |
title="Animal Classifier"
|
38 |
)
|
39 |
|
|
|
40 |
iface.launch()
|