Spaces:
Sleeping
Sleeping
import gradio as gr | |
import tensorflow as tf | |
from tensorflow.keras.models import load_model | |
from tensorflow.keras.preprocessing.image import img_to_array,load_img | |
import numpy as np | |
from PIL import Image | |
import os | |
# Load your model and tokenizer | |
labels = { | |
'class': ['amphibia', 'aves', 'invertebrates', 'lacertilia', 'mammalia', 'serpentes', 'testudines'], | |
'serpentes': ["Butler's Gartersnake", "Dekay's Brownsnake", 'Eastern Gartersnake', 'Eastern Hog-nosed snake', 'Eastern Massasauga', 'Eastern Milksnake', 'Eastern Racer Snake', 'Eastern Ribbonsnake', 'Gray Ratsnake', "Kirtland's Snake", 'Northern Watersnake', 'Plains Gartersnake', 'Red-bellied Snake', 'Smooth Greensnake'], | |
'mammalia': ['American Mink', 'Brown Rat', 'Eastern Chipmunk', 'Eastern Cottontail', 'Long-tailed Weasel', 'Masked Shrew', 'Meadow Jumping Mouse', 'Meadow Vole', 'N. Short-tailed Shrew', 'Raccoon', 'Star-nosed mole', 'Striped Skunk', 'Virginia Opossum', 'White-footed Mouse', 'Woodchuck', 'Woodland Jumping Mouse'], | |
'aves': ['Common Yellowthroat', 'Gray Catbird', 'Indigo Bunting', 'Northern House Wren', 'Song Sparrow', 'Sora'], | |
'amphibia': ['American Bullfrog', 'American Toad', 'Green Frog', 'Northern Leopard Frog'] | |
} | |
hierarchical_models = {} | |
model_path = r"inceptionv3_class.h5" | |
hierarchical_models['class'] = load_model(model_path) | |
def load_and_preprocess_image(image, target_size=(224, 224)): | |
image = image.resize(target_size) | |
img_array = img_to_array(image) | |
img_array = np.expand_dims(img_array, axis=0) | |
img_array = tf.keras.applications.mobilenet_v2.preprocess_input(img_array) | |
return img_array | |
def predict(image): | |
results = {} | |
image_array = load_and_preprocess_image(image) | |
# Predict class level | |
class_preds = hierarchical_models['class'].predict(image_array) | |
print(class_preds) | |
class_idx = np.argmax(class_preds) | |
print(class_idx) | |
class_label = labels['class'][class_idx] | |
class_confidence = class_preds[0][class_idx] | |
class_level = f"{class_label} ({class_confidence*100:.2f}%)" | |
# Predict species level | |
hierarchical_models[class_label] = load_model(f"inceptionv3_{class_label}.h5") | |
species_preds = hierarchical_models[class_label].predict(image_array) | |
species_idx = np.argmax(species_preds) | |
species_label = labels[class_label][species_idx] | |
species_confidence = species_preds[0][species_idx] | |
species_level = f"{species_label} ({species_confidence*100:.2f}%)" | |
return class_level,species_level | |
# Sample images (you can add paths to images here) | |
# sample_images = [ | |
# ("Sample Amphibia", "path/to/amphibia.jpg"), | |
# ("Sample Aves", "path/to/aves.jpg"), | |
# ("Sample Mammalia", "path/to/mammalia.jpg"), | |
# # Add more sample images as needed | |
# ] | |
# Create Gradio interface | |
iface = gr.Interface( | |
fn=predict, | |
inputs=gr.Image(type="pil"), | |
outputs=[gr.Label(label="class_label"), gr.Label(label="species_label")], | |
# examples=sample_images, | |
title="Image Classification", | |
description="Upload an image to classify it into species and class level.", | |
) | |
# Launch the interface | |
iface.launch() | |