|
from ultralytics import YOLO
|
|
import gradio as gr
|
|
import torch
|
|
from tools import fast_process, format_results, box_prompt, point_prompt
|
|
from PIL import ImageDraw
|
|
import numpy as np
|
|
|
|
|
|
model = YOLO('checkpoints/FastSAM.pt')
|
|
|
|
device = 'cuda' if torch.cuda.is_available() else 'cpu'
|
|
|
|
|
|
title = "<center><strong><font size='8'>🏃 Fast Segment Anything 🤗</font></strong></center>"
|
|
|
|
news = """ # 📖 News
|
|
|
|
🔥 2023/06/24: Add the 'Advanced options" in Everything mode to get a more detailed adjustment.
|
|
|
|
🔥 2023/06/26: Support the points mode. (Better and faster interaction will come soon!)
|
|
|
|
"""
|
|
|
|
description_e = """This is a demo on Github project 🏃 [Fast Segment Anything Model](https://github.com/CASIA-IVA-Lab/FastSAM). Welcome to give a star ⭐️ to it.
|
|
|
|
🎯 Upload an Image, segment it with Fast Segment Anything (Everything mode). The other modes will come soon.
|
|
|
|
⌛️ It takes about 6~ seconds to generate segment results. The concurrency_count of queue is 1, please wait for a moment when it is crowded.
|
|
|
|
🚀 To get faster results, you can use a smaller input size and leave high_visual_quality unchecked.
|
|
|
|
📣 You can also obtain the segmentation results of any Image through this Colab: [](https://colab.research.google.com/drive/1oX14f6IneGGw612WgVlAiy91UHwFAvr9?usp=sharing)
|
|
|
|
😚 A huge thanks goes out to the @HuggingFace Team for supporting us with GPU grant.
|
|
|
|
🏠 Check out our [Model Card 🏃](https://huggingface.co/An-619/FastSAM)
|
|
|
|
"""
|
|
|
|
description_p = """ # 🎯 Instructions for points mode
|
|
This is a demo on Github project 🏃 [Fast Segment Anything Model](https://github.com/CASIA-IVA-Lab/FastSAM). Welcome to give a star ⭐️ to it.
|
|
|
|
1. Upload an image or choose an example.
|
|
|
|
2. Choose the point label ('Add mask' means a positive point. 'Remove' Area means a negative point that is not segmented).
|
|
|
|
3. Add points one by one on the image.
|
|
|
|
4. Click the 'Segemnt with points prompt' button to get the segmentation results.
|
|
|
|
**5. If you get Error, click the 'Clear points' button and try again may help.**
|
|
|
|
"""
|
|
|
|
examples = [["assets/sa_8776.jpg"], ["assets/sa_414.jpg"], ["assets/sa_1309.jpg"], ["assets/sa_11025.jpg"],
|
|
["assets/sa_561.jpg"], ["assets/sa_192.jpg"], ["assets/sa_10039.jpg"], ["assets/sa_862.jpg"]]
|
|
|
|
default_example = examples[0]
|
|
|
|
css = "h1 { text-align: center } .about { text-align: justify; padding-left: 10%; padding-right: 10%; }"
|
|
|
|
|
|
def segment_everything(
|
|
input,
|
|
input_size=1024,
|
|
iou_threshold=0.7,
|
|
conf_threshold=0.25,
|
|
better_quality=False,
|
|
withContours=True,
|
|
use_retina=True,
|
|
mask_random_color=True,
|
|
):
|
|
input_size = int(input_size)
|
|
|
|
|
|
w, h = input.size
|
|
scale = input_size / max(w, h)
|
|
new_w = int(w * scale)
|
|
new_h = int(h * scale)
|
|
input = input.resize((new_w, new_h))
|
|
|
|
results = model(input,
|
|
device=device,
|
|
retina_masks=True,
|
|
iou=iou_threshold,
|
|
conf=conf_threshold,
|
|
imgsz=input_size,)
|
|
|
|
fig = fast_process(annotations=results[0].masks.data,
|
|
image=input,
|
|
device=device,
|
|
scale=(1024 // input_size),
|
|
better_quality=better_quality,
|
|
mask_random_color=mask_random_color,
|
|
bbox=None,
|
|
use_retina=use_retina,
|
|
withContours=withContours,)
|
|
return fig
|
|
|
|
def segment_with_points(
|
|
input,
|
|
input_size=1024,
|
|
iou_threshold=0.7,
|
|
conf_threshold=0.25,
|
|
better_quality=False,
|
|
withContours=True,
|
|
mask_random_color=True,
|
|
use_retina=True,
|
|
):
|
|
global global_points
|
|
global global_point_label
|
|
|
|
input_size = int(input_size)
|
|
|
|
w, h = input.size
|
|
scale = input_size / max(w, h)
|
|
new_w = int(w * scale)
|
|
new_h = int(h * scale)
|
|
input = input.resize((new_w, new_h))
|
|
|
|
scaled_points = [[int(x * scale) for x in point] for point in global_points]
|
|
|
|
results = model(input,
|
|
device=device,
|
|
retina_masks=True,
|
|
iou=iou_threshold,
|
|
conf=conf_threshold,
|
|
imgsz=input_size,)
|
|
|
|
results = format_results(results[0], 0)
|
|
|
|
annotations, _ = point_prompt(results, scaled_points, global_point_label, new_h, new_w)
|
|
annotations = np.array([annotations])
|
|
|
|
fig = fast_process(annotations=annotations,
|
|
image=input,
|
|
device=device,
|
|
scale=(1024 // input_size),
|
|
better_quality=better_quality,
|
|
mask_random_color=mask_random_color,
|
|
bbox=None,
|
|
use_retina=use_retina,
|
|
withContours=withContours,)
|
|
global_points = []
|
|
global_point_label = []
|
|
return fig, None
|
|
|
|
def get_points_with_draw(image, label, evt: gr.SelectData):
|
|
x, y = evt.index[0], evt.index[1]
|
|
point_radius, point_color = 15, (255, 255, 0) if label == 'Add Mask' else (255, 0, 255)
|
|
global global_points
|
|
global global_point_label
|
|
print((x, y))
|
|
global_points.append([x, y])
|
|
global_point_label.append(1 if label == 'Add Mask' else 0)
|
|
|
|
|
|
draw = ImageDraw.Draw(image)
|
|
draw.ellipse([(x - point_radius, y - point_radius), (x + point_radius, y + point_radius)], fill=point_color)
|
|
return image
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
cond_img_e = gr.Image(label="Input", value=default_example[0], type='pil')
|
|
cond_img_p = gr.Image(label="Input with points", value=default_example[0], type='pil')
|
|
|
|
segm_img_e = gr.Image(label="Segmented Image", interactive=False, type='pil')
|
|
segm_img_p = gr.Image(label="Segmented Image with points", interactive=False, type='pil')
|
|
|
|
global_points = []
|
|
global_point_label = []
|
|
|
|
input_size_slider = gr.components.Slider(minimum=512,
|
|
maximum=1024,
|
|
value=1024,
|
|
step=64,
|
|
label='Input_size',
|
|
info='Our model was trained on a size of 1024')
|
|
|
|
with gr.Blocks(css=css, title='Fast Segment Anything') as demo:
|
|
with gr.Row():
|
|
with gr.Column(scale=1):
|
|
|
|
gr.Markdown(title)
|
|
|
|
with gr.Column(scale=1):
|
|
|
|
gr.Markdown(news)
|
|
|
|
with gr.Tab("Everything mode"):
|
|
|
|
with gr.Row(variant="panel"):
|
|
with gr.Column(scale=1):
|
|
cond_img_e.render()
|
|
|
|
with gr.Column(scale=1):
|
|
segm_img_e.render()
|
|
|
|
|
|
with gr.Row():
|
|
with gr.Column():
|
|
input_size_slider.render()
|
|
|
|
with gr.Row():
|
|
contour_check = gr.Checkbox(value=True, label='withContours', info='draw the edges of the masks')
|
|
|
|
with gr.Column():
|
|
segment_btn_e = gr.Button("Segment Everything", variant='primary')
|
|
clear_btn_e = gr.Button("Clear", variant="secondary")
|
|
|
|
gr.Markdown("Try some of the examples below ⬇️")
|
|
gr.Examples(examples=examples,
|
|
inputs=[cond_img_e],
|
|
outputs=segm_img_e,
|
|
fn=segment_everything,
|
|
cache_examples=True,
|
|
examples_per_page=4)
|
|
|
|
with gr.Column():
|
|
with gr.Accordion("Advanced options", open=False):
|
|
iou_threshold = gr.Slider(0.1, 0.9, 0.7, step=0.1, label='iou', info='iou threshold for filtering the annotations')
|
|
conf_threshold = gr.Slider(0.1, 0.9, 0.25, step=0.05, label='conf', info='object confidence threshold')
|
|
with gr.Row():
|
|
mor_check = gr.Checkbox(value=False, label='better_visual_quality', info='better quality using morphologyEx')
|
|
with gr.Column():
|
|
retina_check = gr.Checkbox(value=True, label='use_retina', info='draw high-resolution segmentation masks')
|
|
|
|
|
|
gr.Markdown(description_e)
|
|
|
|
with gr.Tab("Points mode"):
|
|
|
|
with gr.Row(variant="panel"):
|
|
with gr.Column(scale=1):
|
|
cond_img_p.render()
|
|
|
|
with gr.Column(scale=1):
|
|
segm_img_p.render()
|
|
|
|
|
|
with gr.Row():
|
|
with gr.Column():
|
|
with gr.Row():
|
|
add_or_remove = gr.Radio(["Add Mask", "Remove Area"], value="Add Mask", label="Point_label (foreground/background)")
|
|
|
|
with gr.Column():
|
|
segment_btn_p = gr.Button("Segment with points prompt", variant='primary')
|
|
clear_btn_p = gr.Button("Clear points", variant='secondary')
|
|
|
|
gr.Markdown("Try some of the examples below ⬇️")
|
|
gr.Examples(examples=examples,
|
|
inputs=[cond_img_p],
|
|
outputs=segm_img_p,
|
|
fn=segment_with_points,
|
|
|
|
examples_per_page=4)
|
|
|
|
with gr.Column():
|
|
|
|
gr.Markdown(description_p)
|
|
|
|
cond_img_p.select(get_points_with_draw, [cond_img_p, add_or_remove], cond_img_p)
|
|
|
|
segment_btn_e.click(segment_everything,
|
|
inputs=[cond_img_e, input_size_slider, iou_threshold, conf_threshold, mor_check, contour_check, retina_check],
|
|
outputs=segm_img_e)
|
|
|
|
segment_btn_p.click(segment_with_points,
|
|
inputs=[cond_img_p],
|
|
outputs=[segm_img_p, cond_img_p])
|
|
|
|
def clear():
|
|
return None, None
|
|
|
|
clear_btn_e.click(clear, outputs=[cond_img_e, segm_img_e])
|
|
clear_btn_p.click(clear, outputs=[cond_img_p, segm_img_p])
|
|
|
|
demo.queue()
|
|
demo.launch()
|
|
|