|
import lightning as pl |
|
import torch.nn as nn |
|
import torch |
|
from timm import create_model |
|
from torchmetrics.classification import Accuracy |
|
from torch.optim.lr_scheduler import StepLR |
|
import torch.optim as optim |
|
from loguru import logger |
|
|
|
logger.add("logs/model.log", rotation="1 MB", level="INFO") |
|
|
|
|
|
class LitEfficientNet(pl.LightningModule): |
|
def __init__( |
|
self, |
|
model_name="tf_efficientnet_lite0", |
|
num_classes=10, |
|
lr=1e-3, |
|
custom_loss=None, |
|
): |
|
""" |
|
Initializes a CNN model from TIMM and integrates TorchMetrics. |
|
|
|
Args: |
|
model_name (str): TIMM model name (e.g., "tf_efficientnet_lite0"). |
|
num_classes (int): Number of output classes (e.g., 0β9 for MNIST). |
|
lr (float): Learning rate for the optimizer. |
|
custom_loss (callable, optional): Custom loss function. Defaults to CrossEntropyLoss. |
|
""" |
|
super().__init__() |
|
|
|
self.lr = lr |
|
self.model = create_model( |
|
model_name, |
|
pretrained=True, |
|
num_classes=num_classes, |
|
in_chans=1, |
|
) |
|
self.loss_fn = custom_loss or nn.CrossEntropyLoss() |
|
self.train_acc = Accuracy(num_classes=num_classes, task="multiclass") |
|
self.val_acc = Accuracy(num_classes=num_classes, task="multiclass") |
|
self.test_acc = Accuracy(num_classes=num_classes, task="multiclass") |
|
logger.info(f"Model initialized with TIMM backbone: {model_name}") |
|
logger.info(f"Number of output classes: {num_classes}") |
|
|
|
def forward(self, x): |
|
""" |
|
Forward pass of the model. |
|
|
|
Args: |
|
x (torch.Tensor): Input tensor. |
|
|
|
Returns: |
|
torch.Tensor: Model predictions. |
|
""" |
|
return self.model(x) |
|
|
|
def training_step(self, batch, batch_idx): |
|
x, y = batch |
|
y_hat = self(x) |
|
loss = self.loss_fn(y_hat, y) |
|
self.train_acc.update(y_hat, y) |
|
self.log("train_loss", loss, prog_bar=True, logger=True) |
|
self.log("train_acc", self.train_acc, prog_bar=True, logger=True) |
|
return loss |
|
|
|
def validation_step(self, batch, batch_idx): |
|
x, y = batch |
|
y_hat = self(x) |
|
loss = self.loss_fn(y_hat, y) |
|
self.val_acc.update(y_hat, y) |
|
self.log("val_loss", loss, prog_bar=True, logger=True) |
|
self.log("val_acc", self.val_acc, prog_bar=True, logger=True) |
|
|
|
def test_step(self, batch, batch_idx): |
|
x, y = batch |
|
y_hat = self(x) |
|
self.test_acc.update(y_hat, y) |
|
self.log("test_acc", self.test_acc, prog_bar=True, logger=True) |
|
|
|
def configure_optimizers(self): |
|
optimizer = optim.Adam(self.parameters(), lr=self.lr) |
|
scheduler = StepLR(optimizer, step_size=1, gamma=0.9) |
|
logger.info(f"Optimizer: Adam, Learning Rate: {self.lr}") |
|
logger.info("Scheduler: StepLR with step_size=1 and gamma=0.9") |
|
return [optimizer], [scheduler] |
|
|