Spaces:
Runtime error
Runtime error
soutrik
commited on
Commit
·
ea271d0
1
Parent(s):
4828471
added: gradio app file and tested on local
Browse files- .gradio/certificate.pem +31 -0
- app.py +115 -0
- src/utils/aws_s3_services.py +14 -4
.gradio/certificate.pem
ADDED
@@ -0,0 +1,31 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
-----BEGIN CERTIFICATE-----
|
2 |
+
MIIFazCCA1OgAwIBAgIRAIIQz7DSQONZRGPgu2OCiwAwDQYJKoZIhvcNAQELBQAw
|
3 |
+
TzELMAkGA1UEBhMCVVMxKTAnBgNVBAoTIEludGVybmV0IFNlY3VyaXR5IFJlc2Vh
|
4 |
+
cmNoIEdyb3VwMRUwEwYDVQQDEwxJU1JHIFJvb3QgWDEwHhcNMTUwNjA0MTEwNDM4
|
5 |
+
WhcNMzUwNjA0MTEwNDM4WjBPMQswCQYDVQQGEwJVUzEpMCcGA1UEChMgSW50ZXJu
|
6 |
+
ZXQgU2VjdXJpdHkgUmVzZWFyY2ggR3JvdXAxFTATBgNVBAMTDElTUkcgUm9vdCBY
|
7 |
+
MTCCAiIwDQYJKoZIhvcNAQEBBQADggIPADCCAgoCggIBAK3oJHP0FDfzm54rVygc
|
8 |
+
h77ct984kIxuPOZXoHj3dcKi/vVqbvYATyjb3miGbESTtrFj/RQSa78f0uoxmyF+
|
9 |
+
0TM8ukj13Xnfs7j/EvEhmkvBioZxaUpmZmyPfjxwv60pIgbz5MDmgK7iS4+3mX6U
|
10 |
+
A5/TR5d8mUgjU+g4rk8Kb4Mu0UlXjIB0ttov0DiNewNwIRt18jA8+o+u3dpjq+sW
|
11 |
+
T8KOEUt+zwvo/7V3LvSye0rgTBIlDHCNAymg4VMk7BPZ7hm/ELNKjD+Jo2FR3qyH
|
12 |
+
B5T0Y3HsLuJvW5iB4YlcNHlsdu87kGJ55tukmi8mxdAQ4Q7e2RCOFvu396j3x+UC
|
13 |
+
B5iPNgiV5+I3lg02dZ77DnKxHZu8A/lJBdiB3QW0KtZB6awBdpUKD9jf1b0SHzUv
|
14 |
+
KBds0pjBqAlkd25HN7rOrFleaJ1/ctaJxQZBKT5ZPt0m9STJEadao0xAH0ahmbWn
|
15 |
+
OlFuhjuefXKnEgV4We0+UXgVCwOPjdAvBbI+e0ocS3MFEvzG6uBQE3xDk3SzynTn
|
16 |
+
jh8BCNAw1FtxNrQHusEwMFxIt4I7mKZ9YIqioymCzLq9gwQbooMDQaHWBfEbwrbw
|
17 |
+
qHyGO0aoSCqI3Haadr8faqU9GY/rOPNk3sgrDQoo//fb4hVC1CLQJ13hef4Y53CI
|
18 |
+
rU7m2Ys6xt0nUW7/vGT1M0NPAgMBAAGjQjBAMA4GA1UdDwEB/wQEAwIBBjAPBgNV
|
19 |
+
HRMBAf8EBTADAQH/MB0GA1UdDgQWBBR5tFnme7bl5AFzgAiIyBpY9umbbjANBgkq
|
20 |
+
hkiG9w0BAQsFAAOCAgEAVR9YqbyyqFDQDLHYGmkgJykIrGF1XIpu+ILlaS/V9lZL
|
21 |
+
ubhzEFnTIZd+50xx+7LSYK05qAvqFyFWhfFQDlnrzuBZ6brJFe+GnY+EgPbk6ZGQ
|
22 |
+
3BebYhtF8GaV0nxvwuo77x/Py9auJ/GpsMiu/X1+mvoiBOv/2X/qkSsisRcOj/KK
|
23 |
+
NFtY2PwByVS5uCbMiogziUwthDyC3+6WVwW6LLv3xLfHTjuCvjHIInNzktHCgKQ5
|
24 |
+
ORAzI4JMPJ+GslWYHb4phowim57iaztXOoJwTdwJx4nLCgdNbOhdjsnvzqvHu7Ur
|
25 |
+
TkXWStAmzOVyyghqpZXjFaH3pO3JLF+l+/+sKAIuvtd7u+Nxe5AW0wdeRlN8NwdC
|
26 |
+
jNPElpzVmbUq4JUagEiuTDkHzsxHpFKVK7q4+63SM1N95R1NbdWhscdCb+ZAJzVc
|
27 |
+
oyi3B43njTOQ5yOf+1CceWxG1bQVs5ZufpsMljq4Ui0/1lvh+wjChP4kqKOJ2qxq
|
28 |
+
4RgqsahDYVvTH9w7jXbyLeiNdd8XM2w9U/t7y0Ff/9yi0GE44Za4rF2LN9d11TPA
|
29 |
+
mRGunUHBcnWEvgJBQl9nJEiU0Zsnvgc/ubhPgXRR4Xq37Z0j4r7g1SgEEzwxA57d
|
30 |
+
emyPxgcYxn/eR44/KJ4EBs+lVDR3veyJm+kXQ99b21/+jh5Xos1AnX5iItreGCc=
|
31 |
+
-----END CERTIFICATE-----
|
app.py
ADDED
@@ -0,0 +1,115 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import torch
|
3 |
+
import torch.nn.functional as F
|
4 |
+
from PIL import Image
|
5 |
+
from pathlib import Path
|
6 |
+
from torchvision import transforms
|
7 |
+
from src.models.catdog_model_resnet import ResnetClassifier
|
8 |
+
from src.utils.aws_s3_services import S3Handler
|
9 |
+
from src.utils.logging_utils import setup_logger
|
10 |
+
from loguru import logger
|
11 |
+
import rootutils
|
12 |
+
|
13 |
+
# Load environment variables and configure logger
|
14 |
+
setup_logger(Path("./logs") / "gradio_app.log")
|
15 |
+
# Setup root directory
|
16 |
+
root = rootutils.setup_root(__file__, indicator=".project-root")
|
17 |
+
|
18 |
+
|
19 |
+
class ImageClassifier:
|
20 |
+
def __init__(self, cfg):
|
21 |
+
self.cfg = cfg
|
22 |
+
self.device = "cuda" if torch.cuda.is_available() else "cpu"
|
23 |
+
self.classes = cfg.labels
|
24 |
+
|
25 |
+
# Download and load model from S3
|
26 |
+
logger.info("Downloading model from S3...")
|
27 |
+
s3_handler = S3Handler(bucket_name="deep-bucket-s3")
|
28 |
+
s3_handler.download_folder("checkpoints", "checkpoints")
|
29 |
+
|
30 |
+
logger.info("Loading model checkpoint...")
|
31 |
+
self.model = ResnetClassifier.load_from_checkpoint(
|
32 |
+
checkpoint_path=cfg.ckpt_path
|
33 |
+
)
|
34 |
+
self.model = self.model.to(self.device)
|
35 |
+
self.model.eval()
|
36 |
+
|
37 |
+
# Image transform
|
38 |
+
self.transform = transforms.Compose(
|
39 |
+
[
|
40 |
+
transforms.Resize((cfg.data.image_size, cfg.data.image_size)),
|
41 |
+
transforms.ToTensor(),
|
42 |
+
transforms.Normalize(
|
43 |
+
mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]
|
44 |
+
),
|
45 |
+
]
|
46 |
+
)
|
47 |
+
|
48 |
+
def predict(self, image):
|
49 |
+
if image is None:
|
50 |
+
return "No image provided.", None
|
51 |
+
|
52 |
+
# Preprocess the image
|
53 |
+
logger.info("Processing input image...")
|
54 |
+
img_tensor = self.transform(image).unsqueeze(0).to(self.device)
|
55 |
+
|
56 |
+
# Inference
|
57 |
+
with torch.no_grad():
|
58 |
+
output = self.model(img_tensor)
|
59 |
+
probabilities = F.softmax(output, dim=1)
|
60 |
+
predicted_class_idx = torch.argmax(probabilities, dim=1).item()
|
61 |
+
confidence = probabilities[0][predicted_class_idx].item()
|
62 |
+
|
63 |
+
predicted_label = self.classes[predicted_class_idx]
|
64 |
+
logger.info(f"Prediction: {predicted_label} (Confidence: {confidence:.2f})")
|
65 |
+
return predicted_label, confidence
|
66 |
+
|
67 |
+
|
68 |
+
def create_gradio_app(cfg):
|
69 |
+
classifier = ImageClassifier(cfg)
|
70 |
+
|
71 |
+
def classify_image(image):
|
72 |
+
"""Gradio interface function."""
|
73 |
+
predicted_label, confidence = classifier.predict(image)
|
74 |
+
if predicted_label:
|
75 |
+
return f"Predicted: {predicted_label} (Confidence: {confidence:.2f})"
|
76 |
+
return "Error during prediction."
|
77 |
+
|
78 |
+
# Create Gradio interface
|
79 |
+
with gr.Blocks() as demo:
|
80 |
+
gr.Markdown(
|
81 |
+
"""
|
82 |
+
# Cat vs Dog Classifier
|
83 |
+
Upload an image of a cat or a dog to classify it with confidence.
|
84 |
+
"""
|
85 |
+
)
|
86 |
+
|
87 |
+
with gr.Row():
|
88 |
+
with gr.Column():
|
89 |
+
input_image = gr.Image(
|
90 |
+
label="Input Image", type="pil", image_mode="RGB"
|
91 |
+
)
|
92 |
+
predict_button = gr.Button("Classify")
|
93 |
+
with gr.Column():
|
94 |
+
output_text = gr.Textbox(label="Prediction")
|
95 |
+
|
96 |
+
# Define interaction
|
97 |
+
predict_button.click(
|
98 |
+
fn=classify_image, inputs=[input_image], outputs=[output_text]
|
99 |
+
)
|
100 |
+
|
101 |
+
return demo
|
102 |
+
|
103 |
+
|
104 |
+
# Hydra config wrapper for launching Gradio app
|
105 |
+
if __name__ == "__main__":
|
106 |
+
import hydra
|
107 |
+
from omegaconf import DictConfig
|
108 |
+
|
109 |
+
@hydra.main(config_path="configs", config_name="infer", version_base="1.3")
|
110 |
+
def main(cfg: DictConfig):
|
111 |
+
logger.info("Launching Gradio App...")
|
112 |
+
demo = create_gradio_app(cfg)
|
113 |
+
demo.launch(share=True, server_name="0.0.0.0", server_port=7860)
|
114 |
+
|
115 |
+
main()
|
src/utils/aws_s3_services.py
CHANGED
@@ -51,14 +51,24 @@ class S3Handler:
|
|
51 |
s3_folder (str): Source folder in S3.
|
52 |
dest_folder (str): Local destination folder path.
|
53 |
"""
|
54 |
-
dest_folder = Path(dest_folder)
|
55 |
paginator = self.s3.get_paginator("list_objects_v2")
|
56 |
|
57 |
for page in paginator.paginate(Bucket=self.bucket_name, Prefix=s3_folder):
|
58 |
for obj in page.get("Contents", []):
|
59 |
s3_path = obj["Key"]
|
60 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
61 |
local_path.parent.mkdir(parents=True, exist_ok=True)
|
|
|
|
|
62 |
self.s3.download_file(self.bucket_name, s3_path, str(local_path))
|
63 |
print(f"Downloaded: {s3_path} to {local_path}")
|
64 |
|
@@ -71,8 +81,8 @@ if __name__ == "__main__":
|
|
71 |
# Upload specific files
|
72 |
s3_handler.upload_folder(
|
73 |
"checkpoints",
|
74 |
-
"
|
75 |
)
|
76 |
|
77 |
# Download example
|
78 |
-
s3_handler.download_folder("
|
|
|
51 |
s3_folder (str): Source folder in S3.
|
52 |
dest_folder (str): Local destination folder path.
|
53 |
"""
|
54 |
+
dest_folder = Path(dest_folder).resolve()
|
55 |
paginator = self.s3.get_paginator("list_objects_v2")
|
56 |
|
57 |
for page in paginator.paginate(Bucket=self.bucket_name, Prefix=s3_folder):
|
58 |
for obj in page.get("Contents", []):
|
59 |
s3_path = obj["Key"]
|
60 |
+
# Skip folder itself if returned by S3
|
61 |
+
if s3_path.endswith("/"):
|
62 |
+
continue
|
63 |
+
|
64 |
+
# Compute relative path and local destination
|
65 |
+
relative_path = Path(s3_path[len(s3_folder) :].lstrip("/"))
|
66 |
+
local_path = dest_folder / relative_path
|
67 |
+
|
68 |
+
# Create necessary local directories
|
69 |
local_path.parent.mkdir(parents=True, exist_ok=True)
|
70 |
+
|
71 |
+
# Download file
|
72 |
self.s3.download_file(self.bucket_name, s3_path, str(local_path))
|
73 |
print(f"Downloaded: {s3_path} to {local_path}")
|
74 |
|
|
|
81 |
# Upload specific files
|
82 |
s3_handler.upload_folder(
|
83 |
"checkpoints",
|
84 |
+
"checkpoints",
|
85 |
)
|
86 |
|
87 |
# Download example
|
88 |
+
s3_handler.download_folder("checkpoints", "checkpoints")
|