Spaces:
Runtime error
Runtime error
soutrik
commited on
Commit
·
a31745a
1
Parent(s):
a46d6f7
added cuda details
Browse files- ec2_runner_setup.md +268 -0
ec2_runner_setup.md
CHANGED
@@ -68,3 +68,271 @@ aws s3 cp data s3://deep-bucket-s3/data --recursive
|
|
68 |
aws s3 ls s3://deep-bucket-s3
|
69 |
aws s3 rm s3://deep-bucket-s3/data --recursive
|
70 |
```
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
68 |
aws s3 ls s3://deep-bucket-s3
|
69 |
aws s3 rm s3://deep-bucket-s3/data --recursive
|
70 |
```
|
71 |
+
|
72 |
+
__Cuda Update Setup__:
|
73 |
+
```bash
|
74 |
+
# if you already have nvidia drivers installed and you have a Tesla T4 GPU
|
75 |
+
sudo apt update
|
76 |
+
sudo apt upgrade
|
77 |
+
sudo reboot
|
78 |
+
|
79 |
+
sudo apt --fix-broken install
|
80 |
+
sudo apt install ubuntu-drivers-common
|
81 |
+
sudo apt autoremove
|
82 |
+
|
83 |
+
nvidia-smi
|
84 |
+
lsmod | grep nvidia
|
85 |
+
|
86 |
+
sudo apt install nvidia-cuda-toolkit
|
87 |
+
nvcc --version
|
88 |
+
|
89 |
+
ls /usr/local/ | grep cuda
|
90 |
+
ldconfig -p | grep cudnn
|
91 |
+
lspci | grep -i nvidia
|
92 |
+
|
93 |
+
Based on the provided details, here is the breakdown of the information about your GPU, CUDA, and environment setup:
|
94 |
+
|
95 |
+
---
|
96 |
+
|
97 |
+
### **1. GPU Details**
|
98 |
+
- **Model**: Tesla T4
|
99 |
+
- A popular NVIDIA GPU for deep learning and AI workloads.
|
100 |
+
- It belongs to the Turing architecture (TU104GL).
|
101 |
+
|
102 |
+
- **Memory**: 16 GB
|
103 |
+
- Only **2 MiB is currently in use**, indicating minimal GPU activity.
|
104 |
+
|
105 |
+
- **Temperature**: 25°C
|
106 |
+
- The GPU is operating at a low temperature, suggesting no heavy utilization currently.
|
107 |
+
|
108 |
+
- **Power Usage**: 11W / 70W
|
109 |
+
- The GPU is in idle or low-performance mode (P8).
|
110 |
+
|
111 |
+
- **MIG Mode**: Not enabled.
|
112 |
+
- MIG (Multi-Instance GPU) mode is specific to NVIDIA A100 and other GPUs, so it is not applicable here.
|
113 |
+
|
114 |
+
---
|
115 |
+
|
116 |
+
### **2. Driver and CUDA Version**
|
117 |
+
- **Driver Version**: 535.216.03
|
118 |
+
- Installed NVIDIA driver supports CUDA 12.x.
|
119 |
+
|
120 |
+
- **CUDA Runtime Version**: 12.2
|
121 |
+
- This is the active runtime version compatible with the driver.
|
122 |
+
|
123 |
+
---
|
124 |
+
|
125 |
+
### **3. CUDA Toolkit Versions**
|
126 |
+
From your `nvcc` and file system checks:
|
127 |
+
- **Default `nvcc` Version**: CUDA 10.1
|
128 |
+
- The system's default `nvcc` is pointing to an older CUDA 10.1 installation (`nvcc --version` output shows CUDA 10.1).
|
129 |
+
|
130 |
+
- **Installed CUDA Toolkits**:
|
131 |
+
- `cuda-12`
|
132 |
+
- `cuda-12.2`
|
133 |
+
- `cuda` (likely symlinked to `cuda-12.2`)
|
134 |
+
|
135 |
+
Multiple CUDA versions are installed. However, the runtime and drivers align with **CUDA 12.2**, while the default compiler (`nvcc`) is still from CUDA 10.1.
|
136 |
+
|
137 |
+
---
|
138 |
+
|
139 |
+
### **4. cuDNN Version**
|
140 |
+
From `cudnn_version.h` and `ldconfig`:
|
141 |
+
- **cuDNN Version**: 9.5.1
|
142 |
+
- This cuDNN version is compatible with **CUDA 12.x**.
|
143 |
+
- **cuDNN Runtime**: The libraries for cuDNN 9 are present under `/lib/x86_64-linux-gnu`.
|
144 |
+
|
145 |
+
---
|
146 |
+
|
147 |
+
### **5. NVIDIA Software Packages**
|
148 |
+
From `dpkg`:
|
149 |
+
- **NVIDIA Drivers**: Driver version 535 is installed.
|
150 |
+
- **CUDA Toolkit**: Multiple versions installed (`10.1`, `12`, `12.2`).
|
151 |
+
- **cuDNN**: Versions for CUDA 12 and CUDA 12.6 are installed (`cudnn9-cuda-12`, `cudnn9-cuda-12-6`).
|
152 |
+
|
153 |
+
---
|
154 |
+
|
155 |
+
### **6. Other Observations**
|
156 |
+
- **Graphics Settings Issue**:
|
157 |
+
- `nvidia-settings` failed due to the lack of a display server connection (`Connection refused`). Likely, this is a headless server without a GUI environment.
|
158 |
+
|
159 |
+
- **OpenGL Tools Missing**:
|
160 |
+
- `glxinfo` command is missing, indicating the `mesa-utils` package needs to be installed.
|
161 |
+
|
162 |
+
---
|
163 |
+
|
164 |
+
### **Summary of Setup**
|
165 |
+
- **GPU**: Tesla T4
|
166 |
+
- **Driver Version**: 535.216.03
|
167 |
+
- **CUDA Runtime Version**: 12.2
|
168 |
+
- **CUDA Toolkit Versions**: 10.1 (default `nvcc`), 12, 12.2
|
169 |
+
- **cuDNN Version**: 9.5.1 (compatible with CUDA 12.x)
|
170 |
+
- **Software Packages**: NVIDIA drivers, CUDA, cuDNN installed
|
171 |
+
```
|
172 |
+
|
173 |
+
__CUDA New Installation__:
|
174 |
+
```bash
|
175 |
+
# if you don't have nvidia drivers installed and you have a Tesla T4 GPU
|
176 |
+
lspci | grep -i nvidia # Check if the GPU is detected
|
177 |
+
To set up the T4 GPU from scratch, starting with no drivers or CUDA tools, and replicating the above configurations and drivers, follow these reverse-engineered steps:
|
178 |
+
|
179 |
+
---
|
180 |
+
|
181 |
+
### **1. Update System**
|
182 |
+
Ensure the system is updated:
|
183 |
+
```bash
|
184 |
+
sudo apt update && sudo apt upgrade -y
|
185 |
+
sudo reboot
|
186 |
+
```
|
187 |
+
|
188 |
+
---
|
189 |
+
|
190 |
+
### **2. Install NVIDIA Driver**
|
191 |
+
#### **a. Identify Required Driver**
|
192 |
+
The T4 GPU requires a compatible NVIDIA driver version. Based on your configurations, we will install **Driver 535**.
|
193 |
+
|
194 |
+
#### **b. Add NVIDIA Repository**
|
195 |
+
Add the official NVIDIA driver repository:
|
196 |
+
```bash
|
197 |
+
sudo apt install -y software-properties-common
|
198 |
+
sudo add-apt-repository -y ppa:graphics-drivers/ppa
|
199 |
+
sudo apt update
|
200 |
+
```
|
201 |
+
|
202 |
+
#### **c. Install Driver**
|
203 |
+
Install the driver for the T4 GPU:
|
204 |
+
```bash
|
205 |
+
sudo apt install -y nvidia-driver-535
|
206 |
+
```
|
207 |
+
|
208 |
+
#### **d. Verify Driver Installation**
|
209 |
+
Reboot the system and check the driver:
|
210 |
+
```bash
|
211 |
+
sudo reboot
|
212 |
+
nvidia-smi
|
213 |
+
```
|
214 |
+
This should display the GPU model and driver version.
|
215 |
+
|
216 |
+
---
|
217 |
+
|
218 |
+
### **3. Install CUDA Toolkit**
|
219 |
+
#### **a. Add CUDA Repository**
|
220 |
+
Download and install the CUDA 12.2 repository for Ubuntu 20.04:
|
221 |
+
```bash
|
222 |
+
wget https://developer.download.nvidia.com/compute/cuda/repos/ubuntu2004/x86_64/cuda-ubuntu2004.pin
|
223 |
+
sudo mv cuda-ubuntu2004.pin /etc/apt/preferences.d/cuda-repository-pin-600
|
224 |
+
wget https://developer.download.nvidia.com/compute/cuda/12.2.0/local_installers/cuda-repo-ubuntu2004-12-2-local_12.2.0-535.86.10-1_amd64.deb
|
225 |
+
sudo dpkg -i cuda-repo-ubuntu2004-12-2-local_12.2.0-535.86.10-1_amd64.deb
|
226 |
+
sudo cp /var/cuda-repo-ubuntu2004-12-2-local/cuda-*-keyring.gpg /usr/share/keyrings/
|
227 |
+
sudo apt update
|
228 |
+
```
|
229 |
+
|
230 |
+
#### **b. Install CUDA Toolkit**
|
231 |
+
Install CUDA 12.2:
|
232 |
+
```bash
|
233 |
+
sudo apt install -y cuda
|
234 |
+
```
|
235 |
+
|
236 |
+
#### **c. Set Up Environment Variables**
|
237 |
+
Add CUDA binaries to the PATH and library paths:
|
238 |
+
```bash
|
239 |
+
echo 'export PATH=/usr/local/cuda-12.2/bin:$PATH' >> ~/.bashrc
|
240 |
+
echo 'export LD_LIBRARY_PATH=/usr/local/cuda-12.2/lib64:$LD_LIBRARY_PATH' >> ~/.bashrc
|
241 |
+
source ~/.bashrc
|
242 |
+
```
|
243 |
+
|
244 |
+
#### **d. Verify CUDA Installation**
|
245 |
+
Check CUDA installation:
|
246 |
+
```bash
|
247 |
+
nvcc --version
|
248 |
+
nvidia-smi
|
249 |
+
```
|
250 |
+
|
251 |
+
---
|
252 |
+
|
253 |
+
### **4. Install cuDNN**
|
254 |
+
#### **a. Download cuDNN**
|
255 |
+
Download cuDNN 9.5.1 (compatible with CUDA 12.x) from the [NVIDIA cuDNN page](https://developer.nvidia.com/cudnn). You’ll need to log in and download the appropriate `.deb` files for Ubuntu 20.04.
|
256 |
+
|
257 |
+
#### **b. Install cuDNN**
|
258 |
+
Install the downloaded `.deb` files:
|
259 |
+
```bash
|
260 |
+
sudo dpkg -i libcudnn9*.deb
|
261 |
+
```
|
262 |
+
|
263 |
+
#### **c. Verify cuDNN**
|
264 |
+
Check the installed version:
|
265 |
+
```bash
|
266 |
+
cat /usr/include/cudnn_version.h | grep CUDNN_MAJOR -A 2
|
267 |
+
```
|
268 |
+
|
269 |
+
---
|
270 |
+
|
271 |
+
### **5. Install NCCL and Other Libraries**
|
272 |
+
Install additional NVIDIA libraries (like NCCL) required for distributed deep learning:
|
273 |
+
```bash
|
274 |
+
sudo apt install -y libnccl2 libnccl-dev
|
275 |
+
```
|
276 |
+
|
277 |
+
---
|
278 |
+
|
279 |
+
### **6. Install PyTorch**
|
280 |
+
#### **a. Install Python Environment**
|
281 |
+
Install Python and `pip` if not already present:
|
282 |
+
```bash
|
283 |
+
sudo apt install -y python3 python3-pip
|
284 |
+
```
|
285 |
+
|
286 |
+
#### **b. Install PyTorch with CUDA 12.2**
|
287 |
+
Install PyTorch with the appropriate CUDA runtime:
|
288 |
+
```bash
|
289 |
+
pip install torch torchvision torchaudio --index-url https://download.pytorch.org/whl/cu122
|
290 |
+
```
|
291 |
+
|
292 |
+
#### **c. Test PyTorch**
|
293 |
+
Run a quick test:
|
294 |
+
```python
|
295 |
+
import torch
|
296 |
+
print(torch.cuda.is_available()) # Should return True
|
297 |
+
print(torch.cuda.get_device_name(0)) # Should return "Tesla T4"
|
298 |
+
```
|
299 |
+
|
300 |
+
---
|
301 |
+
|
302 |
+
### **7. Optional: Install Nsight Tools**
|
303 |
+
For debugging and profiling:
|
304 |
+
```bash
|
305 |
+
sudo apt install -y nsight-compute nsight-systems
|
306 |
+
```
|
307 |
+
|
308 |
+
---
|
309 |
+
|
310 |
+
### **8. Check for OpenGL**
|
311 |
+
If you need OpenGL utilities (like `glxinfo`):
|
312 |
+
```bash
|
313 |
+
sudo apt install -y mesa-utils
|
314 |
+
glxinfo | grep "OpenGL version"
|
315 |
+
```
|
316 |
+
|
317 |
+
---
|
318 |
+
|
319 |
+
### **9. Validate Entire Setup**
|
320 |
+
Run the NVIDIA sample tests to confirm the configuration:
|
321 |
+
```bash
|
322 |
+
cd /usr/local/cuda-12.2/samples/1_Utilities/deviceQuery
|
323 |
+
make
|
324 |
+
./deviceQuery
|
325 |
+
```
|
326 |
+
If successful, it should show details of the T4 GPU.
|
327 |
+
|
328 |
+
---
|
329 |
+
|
330 |
+
### **Summary of Installed Components**
|
331 |
+
- **GPU**: Tesla T4
|
332 |
+
- **Driver**: 535
|
333 |
+
- **CUDA Toolkit**: 12.2
|
334 |
+
- **cuDNN**: 9.5.1
|
335 |
+
- **PyTorch**: Installed with CUDA 12.2 support
|
336 |
+
|
337 |
+
This setup ensures your system is ready for deep learning workloads with the T4 GPU.
|
338 |
+
```
|