gradio_demo / app.py
soutrik
added: testing app and also the workflow file
853a5c8
raw
history blame
792 Bytes
from transformers import pipeline
import gradio as gr
# Load the summarization model once
model = pipeline("summarization")
# Prediction function
def predict(prompt):
try:
# Generate summary and return
summary = model(prompt, max_length=150, min_length=30, do_sample=False)[0][
"summary_text"
]
return summary
except Exception as e:
return f"Error: {str(e)}"
# Gradio interface
with gr.Interface(
fn=predict,
inputs=gr.Textbox(
label="Enter text to summarize", placeholder="Type your content here..."
),
outputs=gr.Textbox(label="Summary"),
title="Text Summarizer",
description="Enter text and get a concise summary powered by Hugging Face transformers.",
) as interface:
interface.launch()