Spaces:
Runtime error
Runtime error
import gradio as gr | |
from models.custom_resnet import CustomResNet | |
from modules.visualize import plot_gradcam_images, plot_misclassified_images | |
from pytorch_grad_cam import GradCAM | |
from pytorch_grad_cam.utils.image import show_cam_on_image | |
from torchvision import transforms | |
import modules.config as config | |
import numpy as np | |
import torch | |
from PIL import Image | |
TITLE = "CIFAR10 Image classification using a Custom ResNet Model" | |
DESCRIPTION = "Gradio App to infer using a Custom ResNet model and get GradCAM results" | |
examples = [ | |
["assets/images/airplane.jpg", 3, True, "layer3_x", 0.6, True, 5, True, 5], | |
["assets/images/bird.jpeg", 4, True, "layer3_x", 0.7, True, 10, True, 20], | |
["assets/images/car.jpg", 5, True, "layer3_x", 0.5, True, 15, True, 5], | |
["assets/images/cat.jpeg", 6, True, "layer3_x", 0.65, True, 20, True, 10], | |
["assets/images/deer.jpg", 7, False, "layer2", 0.75, True, 5, True, 5], | |
["assets/images/dog.jpg", 8, True, "layer2", 0.55, True, 10, True, 5], | |
["assets/images/frog.jpeg", 9, True, "layer2", 0.8, True, 15, True, 15], | |
["assets/images/horse.jpg", 10, False, "layer1_r1", 0.85, True, 20, True, 5], | |
["assets/images/ship.jpg", 3, True, "layer1_r1", 0.4, True, 5, True, 15], | |
["assets/images/truck.jpg", 4, True, "layer1_r1", 0.3, True, 5, True, 10], | |
] | |
# load and initialise the model | |
model = CustomResNet() | |
# Define the device | |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu") | |
# Using the checkpoint path present in config, load the trained model | |
model.load_state_dict(torch.load(config.GRADIO_MODEL_PATH, map_location=device), strict=False) | |
# Send model to CPU | |
model.to(device) | |
# Make the model in evaluation mode | |
model.eval() | |
# Load the misclassified images data | |
misclassified_image_data = torch.load(config.GRADIO_MISCLASSIFIED_PATH, map_location=device) | |
# Class Names | |
classes = list(config.CIFAR_CLASSES) | |
# Allowed model names | |
model_layer_names = ["prep", "layer1_x", "layer1_r1", "layer2", "layer3_x", "layer3_r2"] | |
def get_target_layer(layer_name): | |
"""Get target layer for visualization""" | |
if layer_name == "prep": | |
return [model.prep[-1]] | |
elif layer_name == "layer1_x": | |
return [model.layer1_x[-1]] | |
elif layer_name == "layer1_r1": | |
return [model.layer1_r1[-1]] | |
elif layer_name == "layer2": | |
return [model.layer2[-1]] | |
elif layer_name == "layer3_x": | |
return [model.layer3_x[-1]] | |
elif layer_name == "layer3_r2": | |
return [model.layer3_r2[-1]] | |
else: | |
return None | |
def generate_prediction(input_image, num_classes=3, show_gradcam=True, transparency=0.6, layer_name="layer3_x"): | |
""" "Given an input image, generate the prediction, confidence and display_image""" | |
mean = list(config.CIFAR_MEAN) | |
std = list(config.CIFAR_STD) | |
transform = transforms.Compose([transforms.ToTensor(), transforms.Normalize(mean, std)]) | |
with torch.no_grad(): | |
orginal_img = input_image | |
input_image = transform(input_image).unsqueeze(0).to(device) | |
# print(f"Input Device: {input_image.device}") | |
model_output = model(input_image).to(device) | |
# print(f"Output Device: {outputs.device}") | |
output_exp = torch.exp(model_output).to(device) | |
# print(f"Output Exp Device: {o.device}") | |
output_numpy = np.squeeze(np.asarray(output_exp.numpy())) | |
# get indexes of probabilties in descending order | |
sorted_indexes = np.argsort(output_numpy)[::-1] | |
# sort the probabilities in descending order | |
# final_class = classes[o_np.argmax()] | |
confidences = {} | |
for _ in range(int(num_classes)): | |
# set the confidence of highest class with highest probability | |
confidences[classes[sorted_indexes[_]]] = float(output_numpy[sorted_indexes[_]]) | |
# Show Grad Cam | |
if show_gradcam: | |
# Get the target layer | |
target_layers = get_target_layer(layer_name) | |
cam = GradCAM(model=model, target_layers=target_layers) | |
cam_generated = cam(input_tensor=input_image, targets=None) | |
cam_generated = cam_generated[0, :] | |
display_image = show_cam_on_image(orginal_img / 255, cam_generated, use_rgb=True, image_weight=transparency) | |
else: | |
display_image = orginal_img | |
return confidences, display_image | |
def app_interface( | |
input_image, | |
num_classes, | |
show_gradcam, | |
layer_name, | |
transparency, | |
show_misclassified, | |
num_misclassified, | |
show_gradcam_misclassified, | |
num_gradcam_misclassified, | |
): | |
"""Function which provides the Gradio interface""" | |
input_image = resize_image_pil(input_image, 32, 32) | |
input_image = np.array(input_image) | |
org_img = input_image | |
# Get the prediction for the input image along with confidence and display_image | |
confidences, display_image = generate_prediction(org_img, num_classes, show_gradcam, transparency, layer_name) | |
if show_misclassified: | |
misclassified_fig, misclassified_axs = plot_misclassified_images( | |
data=misclassified_image_data, class_label=classes, num_images=num_misclassified | |
) | |
else: | |
misclassified_fig = None | |
if show_gradcam_misclassified: | |
gradcam_fig, gradcam_axs = plot_gradcam_images( | |
model=model, | |
data=misclassified_image_data, | |
class_label=classes, | |
# Use penultimate block of resnet18 layer 3 as the target layer for gradcam | |
# Decided using model summary so that dimensions > 7x7 | |
target_layers=get_target_layer(layer_name), | |
targets=None, | |
num_images=num_gradcam_misclassified, | |
image_weight=transparency, | |
) | |
else: | |
gradcam_fig = None | |
# # delete ununsed axises | |
# del misclassified_axs | |
# del gradcam_axs | |
return confidences, display_image, misclassified_fig, gradcam_fig | |
def resize_image_pil(image, new_width, new_height): | |
# Convert to PIL image | |
img = Image.fromarray(np.array(image)) | |
# Get original size | |
width, height = img.size | |
# Calculate scale | |
width_scale = new_width / width | |
height_scale = new_height / height | |
scale = min(width_scale, height_scale) | |
# Resize | |
resized = img.resize((int(width*scale), int(height*scale)), Image.NEAREST) | |
# Crop to exact size | |
resized = resized.crop((0, 0, new_width, new_height)) | |
return resized | |
inference_app = gr.Interface( | |
app_interface, | |
inputs=[ | |
# This accepts the image after resizing it to 32x32 which is what our model expects | |
gr.Image(width=256, height=256, label="Input Image"), | |
gr.Number(value=3, maximum=10, minimum=1, step=1.0, precision=0, label="#Classes to show"), | |
gr.Checkbox(True, label="Show GradCAM Image"), | |
gr.Dropdown(model_layer_names, value="layer3_x", label="Visulalization Layer from Model"), | |
# How much should the image be overlayed on the original image | |
gr.Slider(0, 1, 0.6, label="Image Overlay Factor"), | |
gr.Checkbox(True, label="Show Misclassified Images?"), | |
gr.Slider(value=10, maximum=25, minimum=5, step=5.0, label="#Misclassified images to show"), | |
gr.Checkbox(True, label="Visulize GradCAM for Misclassified images?"), | |
gr.Slider(value=10, maximum=25, minimum=5, step=5.0, label="#GradCAM images to show"), | |
], | |
outputs=[ | |
gr.Label(label="Confidences", container=True, show_label=True), | |
gr.Image(label="Grad CAM/ Input Image", container=True, show_label=True,height=256,width=256), | |
gr.Plot(label="Misclassified images", container=True, show_label=True), | |
gr.Plot(label="Grad CAM of Misclassified images", container=True, show_label=True), | |
], | |
title=TITLE, | |
description=DESCRIPTION, | |
examples=examples, | |
) | |
inference_app.launch() | |