Spaces:
Sleeping
Sleeping
import gradio as gr | |
from transformers import AutoModelForCausalLM, AutoTokenizer | |
from peft import PeftModel | |
import torch | |
# Load the base model and apply LoRA adapter | |
base_model = "microsoft/phi-2" # Base model | |
adapter_repo = "soureesh1211/finetuned-phi2" # Your uploaded adapter | |
# Load the base model | |
model = AutoModelForCausalLM.from_pretrained( | |
base_model, torch_dtype=torch.float16, device_map="auto" | |
) | |
# Apply the LoRA adapter | |
model = PeftModel.from_pretrained(model, adapter_repo) | |
# Load tokenizer | |
tokenizer = AutoTokenizer.from_pretrained(base_model) | |
# Define the chatbot function | |
def generate_response(prompt): | |
inputs = tokenizer(prompt, return_tensors="pt").to(model.device) | |
outputs = model.generate(**inputs, max_new_tokens=50) | |
response = tokenizer.decode(outputs[0], skip_special_tokens=True) | |
return response.strip() | |
# Set up Gradio UI | |
iface = gr.Interface( | |
fn=generate_response, | |
inputs=gr.Textbox(lines=2, placeholder="Enter your prompt..."), | |
outputs=gr.Textbox(), | |
title="Fine-Tuned Phi-2 LoRA Chatbot", | |
description="This chatbot uses a fine-tuned LoRA adapter on Microsoft Phi-2. Enter a prompt and receive a response!" | |
) | |
if __name__ == "__main__": | |
iface.launch() | |