Spaces:
Runtime error
Runtime error
sourav11295
commited on
Commit
·
9afdcaf
1
Parent(s):
f94a14e
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,140 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import pandas as pd
|
3 |
+
import numpy as np
|
4 |
+
|
5 |
+
from sklearn.preprocessing import LabelEncoder
|
6 |
+
from sklearn.pipeline import Pipeline
|
7 |
+
from sklearn.model_selection import GridSearchCV
|
8 |
+
from sklearn.model_selection import train_test_split
|
9 |
+
from sklearn.preprocessing import StandardScaler
|
10 |
+
|
11 |
+
from sklearn.linear_model import LinearRegression
|
12 |
+
from sklearn.svm import SVR
|
13 |
+
from sklearn.tree import DecisionTreeRegressor
|
14 |
+
from sklearn.ensemble import RandomForestRegressor
|
15 |
+
|
16 |
+
from sklearn.linear_model import LogisticRegression
|
17 |
+
from sklearn.neighbors import KNeighborsClassifier
|
18 |
+
from sklearn.svm import SVC
|
19 |
+
from sklearn.tree import DecisionTreeClassifier
|
20 |
+
from sklearn.ensemble import RandomForestClassifier
|
21 |
+
|
22 |
+
def read(file,dep,ord):
|
23 |
+
df = pd.read_csv(file.name)
|
24 |
+
cat = list()
|
25 |
+
dep_type = str(df.dtypes[dep])
|
26 |
+
for col in df.columns.values:
|
27 |
+
if str(df.dtypes[col]) == 'bool' or str(df.dtypes[col]) == 'object':
|
28 |
+
cat.append(col)
|
29 |
+
nom = list(set(cat).difference(set(ord)))
|
30 |
+
new_df = df.dropna(axis=0)
|
31 |
+
if str(ord) != "":
|
32 |
+
ord = ord.split(',')
|
33 |
+
le = LabelEncoder()
|
34 |
+
new_df[ord] = new_df[ord].apply(lambda col: le.fit_transform(col))
|
35 |
+
else:
|
36 |
+
pass
|
37 |
+
ohe_df = pd.get_dummies(new_df[nom], drop_first=True)
|
38 |
+
new_df.drop(columns=nom, axis=1,inplace=True)
|
39 |
+
new_df = pd.concat([new_df,ohe_df],axis=1)
|
40 |
+
if dep_type == 'bool' or dep_type == 'object':
|
41 |
+
text = "classification"
|
42 |
+
result = classification(new_df,dep)
|
43 |
+
else:
|
44 |
+
text = "regression"
|
45 |
+
result = regression(new_df,dep)
|
46 |
+
return df.sample(5),new_df.sample(5),result, text, cat, ord, nom
|
47 |
+
|
48 |
+
def classification(df,dep):
|
49 |
+
X = df.drop(dep,axis=1)
|
50 |
+
y = df[dep]
|
51 |
+
|
52 |
+
X_train, X_test, y_train, y_test = train_test_split(X, y)
|
53 |
+
|
54 |
+
scale = StandardScaler()
|
55 |
+
|
56 |
+
pipe = Pipeline(steps=[('scale',scale),('classification','pass')])
|
57 |
+
|
58 |
+
parameters = [
|
59 |
+
{
|
60 |
+
'classification':[LogisticRegression()],
|
61 |
+
},
|
62 |
+
{
|
63 |
+
'classification':[RandomForestClassifier()],
|
64 |
+
},
|
65 |
+
{
|
66 |
+
'classification':[DecisionTreeClassifier()],
|
67 |
+
},
|
68 |
+
{
|
69 |
+
'classification':[SVC()],
|
70 |
+
},
|
71 |
+
{
|
72 |
+
'classification':[KNeighborsClassifier(n_neighbors=5)],
|
73 |
+
},
|
74 |
+
]
|
75 |
+
|
76 |
+
search = GridSearchCV(pipe, param_grid=parameters, n_jobs=-1, scoring='accuracy')
|
77 |
+
search.fit(X_train,y_train)
|
78 |
+
|
79 |
+
result = pd.DataFrame(search.cv_results_)[['params','rank_test_score','mean_test_score']]
|
80 |
+
|
81 |
+
result['mean_test_score']= (result['mean_test_score'])*100
|
82 |
+
result = result.astype({'params': str})
|
83 |
+
|
84 |
+
result.sort_values('rank_test_score',inplace=True)
|
85 |
+
return result
|
86 |
+
|
87 |
+
def regression(df,dep):
|
88 |
+
X = df.drop(dep,axis=1)
|
89 |
+
y =df[dep]
|
90 |
+
|
91 |
+
X_train, X_test, y_train, y_test = train_test_split(X, y)
|
92 |
+
|
93 |
+
scale = StandardScaler()
|
94 |
+
|
95 |
+
pipe = Pipeline(steps=[('scale',scale),('regression','pass')])
|
96 |
+
|
97 |
+
parameters = [
|
98 |
+
{
|
99 |
+
'regression':[LinearRegression()]
|
100 |
+
},
|
101 |
+
{
|
102 |
+
'regression':[RandomForestRegressor()],
|
103 |
+
},
|
104 |
+
{
|
105 |
+
'regression':[DecisionTreeRegressor()],
|
106 |
+
},
|
107 |
+
{
|
108 |
+
'regression':[SVR()],
|
109 |
+
},
|
110 |
+
]
|
111 |
+
|
112 |
+
search = GridSearchCV(pipe, param_grid=parameters, cv=5, n_jobs=-1, scoring='neg_mean_absolute_percentage_error')
|
113 |
+
search.fit(X_train,y_train)
|
114 |
+
|
115 |
+
result = pd.DataFrame(search.cv_results_)[['params','rank_test_score','mean_test_score']]
|
116 |
+
|
117 |
+
result['mean_test_score']= (result['mean_test_score']+1)*100
|
118 |
+
result = result.astype({'params': str})
|
119 |
+
|
120 |
+
result.sort_values('rank_test_score',inplace=True)
|
121 |
+
return result
|
122 |
+
|
123 |
+
with gr.Blocks() as demo:
|
124 |
+
gr.Markdown("Start typing below and then click **Run** to see the output.")
|
125 |
+
with gr.Column():
|
126 |
+
with gr.Row():
|
127 |
+
file = gr.File(label="Upload File(Comma Separated)")
|
128 |
+
dep = gr.Textbox(label="Dependent Variable(Variable as in the file)")
|
129 |
+
ord = gr.Textbox(label="Ordinal Variables(Seperate with a comma)")
|
130 |
+
submit = gr.Button("Submit")
|
131 |
+
text = gr.Text(label="Suitable Algorithm")
|
132 |
+
other1 = gr.Text(label="Categorical Variables")
|
133 |
+
other2 = gr.Text(label="Ordinal Vairables")
|
134 |
+
other3 = gr.Text(label="Nominal Variables")
|
135 |
+
with gr.Row():
|
136 |
+
org = gr.DataFrame(overflow_row_behaviour="paginate", label="Original Data")
|
137 |
+
converted = gr.DataFrame(overflow_row_behaviour="paginate", label="Transformed Data")
|
138 |
+
result = gr.DataFrame(label="Result")
|
139 |
+
submit.click(fn=read, inputs=[file,dep,ord], outputs=[org,converted,result,text,other1,other2,other3])
|
140 |
+
demo.launch(share=True)
|