soupstick's picture
Add missing local Python modules for fraud detection app
76bba0b
"""
RAG (Retrieval Augmented Generation) store for fraud pattern matching
"""
import os
import json
import logging
from typing import List, Dict, Any, Optional
import pickle
from sentence_transformers import SentenceTransformer
import numpy as np
from sklearn.metrics.pairwise import cosine_similarity
logger = logging.getLogger(__name__)
class RAGStore:
"""Simple RAG store using sentence transformers and local file storage"""
def __init__(self, collection_dir: str, model_name: str = "sentence-transformers/all-MiniLM-L6-v2"):
self.collection_dir = collection_dir
self.model_name = model_name
self.embeddings_file = os.path.join(collection_dir, "embeddings.pkl")
self.texts_file = os.path.join(collection_dir, "texts.json")
self.metadata_file = os.path.join(collection_dir, "metadata.json")
os.makedirs(collection_dir, exist_ok=True)
# Initialize sentence transformer
try:
self.encoder = SentenceTransformer(model_name)
logger.info(f"Initialized SentenceTransformer: {model_name}")
except Exception as e:
logger.error(f"Failed to initialize SentenceTransformer: {e}")
self.encoder = None
# Load existing data
self.texts = []
self.metadatas = []
self.embeddings = None
self._load_data()
def _load_data(self):
"""Load existing embeddings, texts, and metadata"""
try:
if os.path.exists(self.texts_file):
with open(self.texts_file, 'r') as f:
self.texts = json.load(f)
if os.path.exists(self.metadata_file):
with open(self.metadata_file, 'r') as f:
self.metadatas = json.load(f)
if os.path.exists(self.embeddings_file):
with open(self.embeddings_file, 'rb') as f:
self.embeddings = pickle.load(f)
logger.info(f"Loaded {len(self.texts)} existing documents")
except Exception as e:
logger.error(f"Error loading RAG data: {e}")
self.texts = []
self.metadatas = []
self.embeddings = None
def _save_data(self):
"""Save embeddings, texts, and metadata to files"""
try:
with open(self.texts_file, 'w') as f:
json.dump(self.texts, f)
with open(self.metadata_file, 'w') as f:
json.dump(self.metadatas, f, default=str)
if self.embeddings is not None:
with open(self.embeddings_file, 'wb') as f:
pickle.dump(self.embeddings, f)
logger.info(f"Saved {len(self.texts)} documents to storage")
except Exception as e:
logger.error(f"Error saving RAG data: {e}")
def add(self, texts: List[str], metadatas: List[Dict[str, Any]]):
"""Add new documents to the RAG store"""
if not self.encoder:
logger.warning("No encoder available, cannot add documents")
return
if len(texts) != len(metadatas):
logger.error("Texts and metadatas must have the same length")
return
try:
# Generate embeddings for new texts
new_embeddings = self.encoder.encode(texts)
# Add to existing data
self.texts.extend(texts)
self.metadatas.extend(metadatas)
if self.embeddings is None:
self.embeddings = new_embeddings
else:
self.embeddings = np.vstack([self.embeddings, new_embeddings])
# Save to disk
self._save_data()
logger.info(f"Added {len(texts)} new documents to RAG store")
except Exception as e:
logger.error(f"Error adding documents to RAG store: {e}")
def query(self, query: str, k: int = 5) -> List[Dict[str, Any]]:
"""Query the RAG store for similar documents"""
if not self.encoder or self.embeddings is None or len(self.texts) == 0:
logger.warning("RAG store is empty or encoder unavailable")
return []
try:
# Encode the query
query_embedding = self.encoder.encode([query])
# Calculate similarities
similarities = cosine_similarity(query_embedding, self.embeddings)[0]
# Get top k results
top_indices = np.argsort(similarities)[::-1][:k]
results = []
for idx in top_indices:
if similarities[idx] > 0.1: # Minimum similarity threshold
results.append({
"text": self.texts[idx],
"metadata": self.metadatas[idx],
"similarity": float(similarities[idx])
})
logger.info(f"Query returned {len(results)} results")
return results
except Exception as e:
logger.error(f"Error querying RAG store: {e}")
return []
def get_stats(self) -> Dict[str, Any]:
"""Get statistics about the RAG store"""
return {
"total_documents": len(self.texts),
"has_embeddings": self.embeddings is not None,
"encoder_available": self.encoder is not None,
"collection_dir": self.collection_dir
}
def clear(self):
"""Clear all data from the RAG store"""
try:
self.texts = []
self.metadatas = []
self.embeddings = None
# Remove files
for file_path in [self.embeddings_file, self.texts_file, self.metadata_file]:
if os.path.exists(file_path):
os.remove(file_path)
logger.info("RAG store cleared")
except Exception as e:
logger.error(f"Error clearing RAG store: {e}")
# Utility functions for fraud-specific RAG queries
def build_fraud_context(transaction_data: Dict[str, Any]) -> str:
"""Build a searchable text representation of transaction data"""
parts = []
if 'amount' in transaction_data:
parts.append(f"amount:{transaction_data['amount']}")
if 'merchant' in transaction_data:
parts.append(f"merchant:{transaction_data['merchant']}")
if 'category' in transaction_data:
parts.append(f"category:{transaction_data['category']}")
if 'description' in transaction_data:
parts.append(f"description:{transaction_data['description']}")
if 'timestamp' in transaction_data:
parts.append(f"time:{transaction_data['timestamp']}")
return " ".join(parts)
def extract_fraud_patterns(rag_results: List[Dict[str, Any]]) -> List[str]:
"""Extract common fraud patterns from RAG results"""
patterns = []
for result in rag_results:
metadata = result.get('metadata', {})
similarity = result.get('similarity', 0)
if similarity > 0.7: # High similarity threshold
if 'merchant' in metadata:
patterns.append(f"Similar merchant: {metadata['merchant']}")
if 'amount' in metadata:
patterns.append(f"Similar amount: ${metadata['amount']}")
if 'category' in metadata:
patterns.append(f"Similar category: {metadata['category']}")
return list(set(patterns)) # Remove duplicates