Spaces:
Paused
Paused
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,23 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM
|
3 |
+
import torch
|
4 |
+
|
5 |
+
# Load the model
|
6 |
+
model_name = "ruslanmv/Medical-Llama3-8B"
|
7 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
8 |
+
model = AutoModelForCausalLM.from_pretrained(model_name, device_map="auto", torch_dtype=torch.float16)
|
9 |
+
|
10 |
+
def generate_response(question):
|
11 |
+
inputs = tokenizer(question, return_tensors="pt").input_ids.to(model.device)
|
12 |
+
outputs = model.generate(inputs, max_new_tokens=256)
|
13 |
+
return tokenizer.decode(outputs[0], skip_special_tokens=True)
|
14 |
+
|
15 |
+
iface = gr.Interface(
|
16 |
+
fn=generate_response,
|
17 |
+
inputs="text",
|
18 |
+
outputs="text",
|
19 |
+
title="Medical Query Assistant",
|
20 |
+
description="Ask medical questions and receive AI-powered answers.",
|
21 |
+
)
|
22 |
+
|
23 |
+
iface.launch(share=True)
|