Spaces:
Paused
Paused
from transformers import AutoModelForCausalLM, AutoTokenizer, BitsAndBytesConfig | |
import torch | |
model_name = "ruslanmv/Medical-Llama3-8B" | |
device_map = 'auto' | |
bnb_config = BitsAndBytesConfig(load_in_4bit=True, bnb_4bit_quant_type="nf4",bnb_4bit_compute_dtype=torch.float16,) | |
model = AutoModelForCausalLM.from_pretrained( model_name,quantization_config=bnb_config, trust_remote_code=True,use_cache=False,device_map=device_map) | |
tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True) | |
tokenizer.pad_token = tokenizer.eos_token | |
def askme(question): | |
sys_message = ''' | |
You are an AI Medical Assistant trained on a vast dataset of health information. Please be thorough and | |
provide an informative answer. If you don't know the answer to a specific medical inquiry, advise seeking professional help. | |
''' | |
# Create messages structured for the chat template | |
messages = [{"role": "system", "content": sys_message}, {"role": "user", "content": question}] | |
# Applying chat template | |
prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) | |
inputs = tokenizer(prompt, return_tensors="pt").to("cuda") | |
outputs = model.generate(**inputs, max_new_tokens=100, use_cache=True) | |
# Extract and return the generated text, removing the prompt | |
response_text = tokenizer.batch_decode(outputs)[0].strip() | |
answer = response_text.split('<|im_start|>assistant')[-1].strip() | |
return answer | |
# Example usage | |
# - Context: First describe your problem. | |
# - Question: Then make the question. | |
question = '''I'm a 35-year-old male and for the past few months, I've been experiencing fatigue, | |
increased sensitivity to cold, and dry, itchy skin. | |
Could these symptoms be related to hypothyroidism? | |
If so, what steps should I take to get a proper diagnosis and discuss treatment options?''' | |
print(askme(question)) | |