Spaces:
Paused
Paused
Update app.py
Browse files
app.py
CHANGED
@@ -1,66 +1,32 @@
|
|
1 |
-
|
2 |
-
import torch
|
3 |
-
from PIL import Image
|
4 |
-
from transformers import AutoModel, AutoTokenizer, BitsAndBytesConfig
|
5 |
|
6 |
# Get API token from environment variable
|
7 |
-
api_token = os.getenv("HF_TOKEN").strip()
|
8 |
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
bnb_4bit_quant_type="nf4",
|
13 |
-
bnb_4bit_use_double_quant=True,
|
14 |
-
bnb_4bit_compute_dtype=torch.float16,
|
15 |
-
)
|
16 |
|
17 |
-
#
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
25 |
)
|
26 |
-
tokenizer = AutoTokenizer.from_pretrained(
|
27 |
-
"ContactDoctor/Bio-Medical-MultiModal-Llama-3-8B-V1",
|
28 |
-
trust_remote_code=True
|
29 |
-
)
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
app = Flask(__name__)
|
34 |
-
|
35 |
-
# Model configuration and loading (same as before)
|
36 |
-
|
37 |
-
@app.route('/analyze', methods=['POST'])
|
38 |
-
def analyze():
|
39 |
-
image = request.files['image']
|
40 |
-
question = request.form['question']
|
41 |
-
|
42 |
-
# Preprocess image
|
43 |
-
image = Image.open(image).convert('RGB')
|
44 |
-
|
45 |
-
# Prepare input
|
46 |
-
msgs = [{'role': 'user', 'content': [image, question]}]
|
47 |
-
|
48 |
-
# Generate response
|
49 |
-
res = model.chat(
|
50 |
-
image=image,
|
51 |
-
msgs=msgs,
|
52 |
-
tokenizer=tokenizer,
|
53 |
-
sampling=True,
|
54 |
-
temperature=0.95,
|
55 |
-
stream=True
|
56 |
-
)
|
57 |
-
|
58 |
-
# Process response
|
59 |
-
generated_text = ""
|
60 |
-
for new_text in res:
|
61 |
-
generated_text += new_text
|
62 |
-
|
63 |
-
return jsonify({'response': generated_text})
|
64 |
|
65 |
-
|
66 |
-
app.run(debug=True)
|
|
|
1 |
+
|
|
|
|
|
|
|
2 |
|
3 |
# Get API token from environment variable
|
4 |
+
#api_token = os.getenv("HF_TOKEN").strip()
|
5 |
|
6 |
+
import gradio as gr
|
7 |
+
from transformers import AutoModel, AutoTokenizer
|
8 |
+
import torch
|
|
|
|
|
|
|
|
|
9 |
|
10 |
+
# Load the model and tokenizer
|
11 |
+
model_name = "ContactDoctor/Bio-Medical-MultiModal-Llama-3-8B-V1"
|
12 |
+
model = AutoModel.from_pretrained(model_name, trust_remote_code=True, device_map="auto", torch_dtype=torch.float16)
|
13 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True)
|
14 |
+
|
15 |
+
def process_query(image, question):
|
16 |
+
inputs = {"question": question}
|
17 |
+
if image:
|
18 |
+
inputs["image"] = image
|
19 |
+
|
20 |
+
# Process the inputs and generate a response
|
21 |
+
response = model.chat(image=inputs.get("image"), msgs=[{"role": "user", "content": question}], tokenizer=tokenizer)
|
22 |
+
return response
|
23 |
+
|
24 |
+
iface = gr.Interface(
|
25 |
+
fn=process_query,
|
26 |
+
inputs=[gr.Image(label="Upload Medical Image"), gr.Textbox(label="Question")],
|
27 |
+
outputs="text",
|
28 |
+
title="Medical Multimodal Assistant",
|
29 |
+
description="Upload a medical image and ask your question."
|
30 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
31 |
|
32 |
+
iface.launch()
|
|