Spaces:
				
			
			
	
			
			
		Runtime error
		
	
	
	
			
			
	
	
	
	
		
		
		Runtime error
		
	| import os | |
| import copy | |
| import sys | |
| import importlib | |
| import argparse | |
| import pandas as pd | |
| from easydict import EasyDict as edict | |
| if __name__ == '__main__': | |
| dataset_utils = importlib.import_module(f'datasets.{sys.argv[1]}') | |
| parser = argparse.ArgumentParser() | |
| parser.add_argument('--output_dir', type=str, required=True, | |
| help='Directory to save the metadata') | |
| parser.add_argument('--filter_low_aesthetic_score', type=float, default=None, | |
| help='Filter objects with aesthetic score lower than this value') | |
| parser.add_argument('--instances', type=str, default=None, | |
| help='Instances to process') | |
| dataset_utils.add_args(parser) | |
| parser.add_argument('--rank', type=int, default=0) | |
| parser.add_argument('--world_size', type=int, default=1) | |
| opt = parser.parse_args(sys.argv[2:]) | |
| opt = edict(vars(opt)) | |
| os.makedirs(opt.output_dir, exist_ok=True) | |
| # get file list | |
| if not os.path.exists(os.path.join(opt.output_dir, 'metadata.csv')): | |
| raise ValueError('metadata.csv not found') | |
| metadata = pd.read_csv(os.path.join(opt.output_dir, 'metadata.csv')) | |
| if opt.instances is None: | |
| if opt.filter_low_aesthetic_score is not None: | |
| metadata = metadata[metadata['aesthetic_score'] >= opt.filter_low_aesthetic_score] | |
| if 'local_path' in metadata.columns: | |
| metadata = metadata[metadata['local_path'].isna()] | |
| else: | |
| if os.path.exists(opt.instances): | |
| with open(opt.instances, 'r') as f: | |
| instances = f.read().splitlines() | |
| else: | |
| instances = opt.instances.split(',') | |
| metadata = metadata[metadata['sha256'].isin(instances)] | |
| start = len(metadata) * opt.rank // opt.world_size | |
| end = len(metadata) * (opt.rank + 1) // opt.world_size | |
| metadata = metadata[start:end] | |
| print(f'Processing {len(metadata)} objects...') | |
| # process objects | |
| downloaded = dataset_utils.download(metadata, **opt) | |
| downloaded.to_csv(os.path.join(opt.output_dir, f'downloaded_{opt.rank}.csv'), index=False) | |
