sotirios-slv commited on
Commit
78c34a6
β€’
1 Parent(s): bcfefbb

Initial setup

Browse files
Files changed (3) hide show
  1. app.py +3 -0
  2. images/val_speaking_transparent.gif +0 -0
  3. requirements.txt +143 -0
app.py ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ accelerate
2
+ transformers
3
+ SentencePiece
images/val_speaking_transparent.gif ADDED
requirements.txt ADDED
@@ -0,0 +1,143 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import gradio as gr
2
+ import os
3
+ import spaces
4
+ from transformers import GemmaTokenizer, AutoModelForCausalLM
5
+ from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer
6
+ from threading import Thread
7
+
8
+ # Set an environment variable
9
+ HF_TOKEN = os.environ.get("HF_TOKEN", None)
10
+
11
+
12
+ DESCRIPTION = '''
13
+ <div>
14
+ <h1 style="text-align: center;">Meta Llama3 8B</h1>
15
+ <p>This Space demonstrates the instruction-tuned model <a href="https://huggingface.co/meta-llama/Meta-Llama-3-8B-Instruct"><b>Meta Llama3 8b Chat</b></a>. Meta Llama3 is the new open LLM and comes in two sizes: 8b and 70b. Feel free to play with it, or duplicate to run privately!</p>
16
+ <p>πŸ”Ž For more details about the Llama3 release and how to use the model with <code>transformers</code>, take a look <a href="https://huggingface.co/blog/llama3">at our blog post</a>.</p>
17
+ <p>πŸ¦• Looking for an even more powerful model? Check out the <a href="https://huggingface.co/chat/"><b>Hugging Chat</b></a> integration for Meta Llama 3 70b</p>
18
+ </div>
19
+ '''
20
+
21
+ LICENSE = """
22
+ <p/>
23
+ ---
24
+ Built with Meta Llama 3
25
+ """
26
+
27
+ PLACEHOLDER = """
28
+ <div style="padding: 30px; text-align: center; display: flex; flex-direction: column; align-items: center;">
29
+ <img src="./images/val_speaking_transparent.gif" style="width: 80%; max-width: 550px; height: auto; opacity: 0.55; ">
30
+ <h1 style="font-size: 28px; margin-bottom: 2px; opacity: 0.55;">Val</h1>
31
+ <p style="font-size: 18px; margin-bottom: 2px; opacity: 0.65;">Hi i'm Val, ask me anything about working for VPS...</p>
32
+ </div>
33
+ """
34
+
35
+
36
+ css = """
37
+ h1 {
38
+ text-align: center;
39
+ display: block;
40
+ }
41
+ #duplicate-button {
42
+ margin: auto;
43
+ color: white;
44
+ background: #1565c0;
45
+ border-radius: 100vh;
46
+ }
47
+ """
48
+
49
+ # Load the tokenizer and model
50
+ tokenizer = AutoTokenizer.from_pretrained("meta-llama/Meta-Llama-3-8B-Instruct")
51
+ model = AutoModelForCausalLM.from_pretrained("meta-llama/Meta-Llama-3-8B-Instruct", device_map="auto") # to("cuda:0")
52
+ terminators = [
53
+ tokenizer.eos_token_id,
54
+ tokenizer.convert_tokens_to_ids("<|eot_id|>")
55
+ ]
56
+
57
+ @spaces.GPU(duration=120)
58
+ def chat_llama3_8b(message: str,
59
+ history: list,
60
+ temperature: float,
61
+ max_new_tokens: int
62
+ ) -> str:
63
+ """
64
+ Generate a streaming response using the llama3-8b model.
65
+ Args:
66
+ message (str): The input message.
67
+ history (list): The conversation history used by ChatInterface.
68
+ temperature (float): The temperature for generating the response.
69
+ max_new_tokens (int): The maximum number of new tokens to generate.
70
+ Returns:
71
+ str: The generated response.
72
+ """
73
+ conversation = []
74
+ for user, assistant in history:
75
+ conversation.extend([{"role": "user", "content": user}, {"role": "assistant", "content": assistant}])
76
+ conversation.append({"role": "user", "content": message})
77
+
78
+ input_ids = tokenizer.apply_chat_template(conversation, return_tensors="pt").to(model.device)
79
+
80
+ streamer = TextIteratorStreamer(tokenizer, timeout=10.0, skip_prompt=True, skip_special_tokens=True)
81
+
82
+ generate_kwargs = dict(
83
+ input_ids= input_ids,
84
+ streamer=streamer,
85
+ max_new_tokens=max_new_tokens,
86
+ do_sample=True,
87
+ temperature=temperature,
88
+ eos_token_id=terminators,
89
+ )
90
+ # This will enforce greedy generation (do_sample=False) when the temperature is passed 0, avoiding the crash.
91
+ if temperature == 0:
92
+ generate_kwargs['do_sample'] = False
93
+
94
+ t = Thread(target=model.generate, kwargs=generate_kwargs)
95
+ t.start()
96
+
97
+ outputs = []
98
+ for text in streamer:
99
+ outputs.append(text)
100
+ #print(outputs)
101
+ yield "".join(outputs)
102
+
103
+
104
+ # Gradio block
105
+ chatbot=gr.Chatbot(height=450, placeholder=PLACEHOLDER, label='Gradio ChatInterface')
106
+
107
+ with gr.Blocks(fill_height=True, css=css) as demo:
108
+
109
+ gr.Markdown(DESCRIPTION)
110
+ gr.DuplicateButton(value="Duplicate Space for private use", elem_id="duplicate-button")
111
+ gr.ChatInterface(
112
+ fn=chat_llama3_8b,
113
+ chatbot=chatbot,
114
+ fill_height=True,
115
+ additional_inputs_accordion=gr.Accordion(label="βš™οΈ Parameters", open=False, render=False),
116
+ additional_inputs=[
117
+ gr.Slider(minimum=0,
118
+ maximum=1,
119
+ step=0.1,
120
+ value=0.95,
121
+ label="Temperature",
122
+ render=False),
123
+ gr.Slider(minimum=128,
124
+ maximum=4096,
125
+ step=1,
126
+ value=512,
127
+ label="Max new tokens",
128
+ render=False ),
129
+ ],
130
+ examples=[
131
+ ['Where is the nearest .'],
132
+ ['Tell me about working for the Victorian Public Sector.'],
133
+ ['How do I book leave?'],
134
+ ['Tell me about my organisations Disability Network'],
135
+ ['']
136
+ ],
137
+ cache_examples=False,
138
+ )
139
+
140
+ gr.Markdown(LICENSE)
141
+
142
+ if __name__ == "__main__":
143
+ demo.launch()