Create utils.py
Browse files- detector/utils.py +62 -0
detector/utils.py
ADDED
@@ -0,0 +1,62 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import sys
|
2 |
+
from functools import reduce
|
3 |
+
|
4 |
+
from torch import nn
|
5 |
+
import torch.distributed as dist
|
6 |
+
|
7 |
+
|
8 |
+
def summary(model: nn.Module, file=sys.stdout):
|
9 |
+
def repr(model):
|
10 |
+
# We treat the extra repr like the sub-module, one item per line
|
11 |
+
extra_lines = []
|
12 |
+
extra_repr = model.extra_repr()
|
13 |
+
# empty string will be split into list ['']
|
14 |
+
if extra_repr:
|
15 |
+
extra_lines = extra_repr.split('\n')
|
16 |
+
child_lines = []
|
17 |
+
total_params = 0
|
18 |
+
for key, module in model._modules.items():
|
19 |
+
mod_str, num_params = repr(module)
|
20 |
+
mod_str = nn.modules.module._addindent(mod_str, 2)
|
21 |
+
child_lines.append('(' + key + '): ' + mod_str)
|
22 |
+
total_params += num_params
|
23 |
+
lines = extra_lines + child_lines
|
24 |
+
|
25 |
+
for name, p in model._parameters.items():
|
26 |
+
if hasattr(p, 'shape'):
|
27 |
+
total_params += reduce(lambda x, y: x * y, p.shape)
|
28 |
+
|
29 |
+
main_str = model._get_name() + '('
|
30 |
+
if lines:
|
31 |
+
# simple one-liner info, which most builtin Modules will use
|
32 |
+
if len(extra_lines) == 1 and not child_lines:
|
33 |
+
main_str += extra_lines[0]
|
34 |
+
else:
|
35 |
+
main_str += '\n ' + '\n '.join(lines) + '\n'
|
36 |
+
|
37 |
+
main_str += ')'
|
38 |
+
if file is sys.stdout:
|
39 |
+
main_str += ', \033[92m{:,}\033[0m params'.format(total_params)
|
40 |
+
else:
|
41 |
+
main_str += ', {:,} params'.format(total_params)
|
42 |
+
return main_str, total_params
|
43 |
+
|
44 |
+
string, count = repr(model)
|
45 |
+
if file is not None:
|
46 |
+
if isinstance(file, str):
|
47 |
+
file = open(file, 'w')
|
48 |
+
print(string, file=file)
|
49 |
+
file.flush()
|
50 |
+
|
51 |
+
return count
|
52 |
+
|
53 |
+
|
54 |
+
def grad_norm(model: nn.Module):
|
55 |
+
total_norm = 0
|
56 |
+
for p in model.parameters():
|
57 |
+
param_norm = p.grad.data.norm(2)
|
58 |
+
total_norm += param_norm.item() ** 2
|
59 |
+
return total_norm ** 0.5
|
60 |
+
|
61 |
+
def distributed():
|
62 |
+
return dist.is_available() and dist.is_initialized()
|