sonoisa's picture
Add application files
aebfdca
raw
history blame
6.08 kB
from __future__ import unicode_literals
import re
import unicodedata
import torch
import streamlit as st
from transformers import T5ForConditionalGeneration, T5Tokenizer
def load_model():
# 学習済みモデルをHugging Face model hubからダウンロードする
model_dir_name = "sonoisa/t5-qiita-title-generation"
# トークナイザー(SentencePiece)
tokenizer = T5Tokenizer.from_pretrained(model_dir_name, is_fast=True)
# 学習済みモデル
trained_model = T5ForConditionalGeneration.from_pretrained(model_dir_name)
# GPUの利用有無
USE_GPU = torch.cuda.is_available()
if USE_GPU:
trained_model.cuda()
return trained_model, tokenizer
def unicode_normalize(cls, s):
pt = re.compile("([{}]+)".format(cls))
def norm(c):
return unicodedata.normalize("NFKC", c) if pt.match(c) else c
s = "".join(norm(x) for x in re.split(pt, s))
s = re.sub("-", "-", s)
return s
def remove_extra_spaces(s):
s = re.sub("[  ]+", " ", s)
blocks = "".join(
(
"\u4E00-\u9FFF", # CJK UNIFIED IDEOGRAPHS
"\u3040-\u309F", # HIRAGANA
"\u30A0-\u30FF", # KATAKANA
"\u3000-\u303F", # CJK SYMBOLS AND PUNCTUATION
"\uFF00-\uFFEF", # HALFWIDTH AND FULLWIDTH FORMS
)
)
basic_latin = "\u0000-\u007F"
def remove_space_between(cls1, cls2, s):
p = re.compile("([{}]) ([{}])".format(cls1, cls2))
while p.search(s):
s = p.sub(r"\1\2", s)
return s
s = remove_space_between(blocks, blocks, s)
s = remove_space_between(blocks, basic_latin, s)
s = remove_space_between(basic_latin, blocks, s)
return s
def normalize_neologd(s):
s = s.strip()
s = unicode_normalize("0-9A-Za-z。-゚", s)
def maketrans(f, t):
return {ord(x): ord(y) for x, y in zip(f, t)}
s = re.sub("[˗֊‐‑‒–⁃⁻₋−]+", "-", s) # normalize hyphens
s = re.sub("[﹣-ー—―─━ー]+", "ー", s) # normalize choonpus
s = re.sub("[~∼∾〜〰~]+", "〜", s) # normalize tildes (modified by Isao Sonobe)
s = s.translate(
maketrans(
"!\"#$%&'()*+,-./:;<=>?@[¥]^_`{|}~。、・「」",
"!”#$%&’()*+,-./:;<=>?@[¥]^_`{|}〜。、・「」",
)
)
s = remove_extra_spaces(s)
s = unicode_normalize("!”#$%&’()*+,-./:;<>?@[¥]^_`{|}〜", s) # keep =,・,「,」
s = re.sub("[’]", "'", s)
s = re.sub("[”]", '"', s)
return s
CODE_PATTERN = re.compile(r"```.*?```", re.MULTILINE | re.DOTALL)
LINK_PATTERN = re.compile(r"!?\[([^\]\)]+)\]\([^\)]+\)")
IMG_PATTERN = re.compile(r"<img[^>]*>")
URL_PATTERN = re.compile(r"(http|ftp)s?://[^\s]+")
NEWLINES_PATTERN = re.compile(r"(\s*\n\s*)+")
def clean_markdown(markdown_text):
markdown_text = CODE_PATTERN.sub(r"", markdown_text)
markdown_text = LINK_PATTERN.sub(r"\1", markdown_text)
markdown_text = IMG_PATTERN.sub(r"", markdown_text)
markdown_text = URL_PATTERN.sub(r"", markdown_text)
markdown_text = NEWLINES_PATTERN.sub(r"\n", markdown_text)
markdown_text = markdown_text.replace("`", "")
return markdown_text
def normalize_text(markdown_text):
markdown_text = clean_markdown(markdown_text)
markdown_text = markdown_text.replace("\t", " ")
markdown_text = normalize_neologd(markdown_text).lower()
markdown_text = markdown_text.replace("\n", " ")
return markdown_text
def preprocess_qiita_body(markdown_text):
return "body: " + normalize_text(markdown_text)[:4000]
def postprocess_title(title):
return re.sub(r"^title: ", "", title)
trained_model, tokenizer = load_model()
# GPUの利用有無
USE_GPU = torch.cuda.is_available()
# 推論モード設定
trained_model.eval()
st.title("Qiita記事タイトル案生成")
st.text("記事の本文をコピペ入力して、タイトル生成ボタンを押すと、タイトル案が10個生成されます。")
body_text = st.text_area(label="記事の本文", value="", height=300, max_chars=4000)
answer = st.button("タイトル生成")
if answer:
qiita_body = str(body_text)
MAX_SOURCE_LENGTH = 512 # 入力される記事本文の最大トークン数
MAX_TARGET_LENGTH = 64 # 生成されるタイトルの最大トークン数
# 前処理とトークナイズを行う
inputs = [preprocess_qiita_body(qiita_body)]
batch = tokenizer.batch_encode_plus(
inputs,
max_length=MAX_SOURCE_LENGTH,
truncation=True,
padding="longest",
return_tensors="pt",
)
input_ids = batch["input_ids"]
input_mask = batch["attention_mask"]
if USE_GPU:
input_ids = input_ids.cuda()
input_mask = input_mask.cuda()
# 生成処理を行う
outputs = trained_model.generate(
input_ids=input_ids,
attention_mask=input_mask,
max_length=MAX_TARGET_LENGTH,
return_dict_in_generate=True,
output_scores=True,
temperature=1.0, # 生成にランダム性を入れる温度パラメータ
num_beams=10, # ビームサーチの探索幅
diversity_penalty=1.0, # 生成結果の多様性を生み出すためのペナルティ
num_beam_groups=10, # ビームサーチのグループ数
num_return_sequences=10, # 生成する文の数
repetition_penalty=1.5, # 同じ文の繰り返し(モード崩壊)へのペナルティ
)
# 生成されたトークン列を文字列に変換する
generated_titles = [
tokenizer.decode(
ids, skip_special_tokens=True, clean_up_tokenization_spaces=False
)
for ids in outputs.sequences
]
# 生成されたタイトルを表示する
titles = "## タイトル案:\n\n"
for i, title in enumerate(generated_titles):
titles += f"1. {postprocess_title(title)}\n"
st.markdown(titles)