Spaces:
Runtime error
Runtime error
import numpy as np | |
import os | |
import matplotlib as mpl | |
import matplotlib.pyplot as plt | |
import seaborn as sns | |
import torch | |
import torchvision | |
from utils.richtext_utils import seed_everything | |
from sklearn.cluster import KMeans, SpectralClustering | |
# SelfAttentionLayers = [ | |
# # 'down_blocks.0.attentions.0.transformer_blocks.0.attn1', | |
# # 'down_blocks.0.attentions.1.transformer_blocks.0.attn1', | |
# 'down_blocks.1.attentions.0.transformer_blocks.0.attn1', | |
# # 'down_blocks.1.attentions.1.transformer_blocks.0.attn1', | |
# 'down_blocks.2.attentions.0.transformer_blocks.0.attn1', | |
# 'down_blocks.2.attentions.1.transformer_blocks.0.attn1', | |
# 'mid_block.attentions.0.transformer_blocks.0.attn1', | |
# 'up_blocks.1.attentions.0.transformer_blocks.0.attn1', | |
# 'up_blocks.1.attentions.1.transformer_blocks.0.attn1', | |
# 'up_blocks.1.attentions.2.transformer_blocks.0.attn1', | |
# # 'up_blocks.2.attentions.0.transformer_blocks.0.attn1', | |
# 'up_blocks.2.attentions.1.transformer_blocks.0.attn1', | |
# # 'up_blocks.2.attentions.2.transformer_blocks.0.attn1', | |
# # 'up_blocks.3.attentions.0.transformer_blocks.0.attn1', | |
# # 'up_blocks.3.attentions.1.transformer_blocks.0.attn1', | |
# # 'up_blocks.3.attentions.2.transformer_blocks.0.attn1', | |
# ] | |
SelfAttentionLayers = [ | |
# 'down_blocks.0.attentions.0.transformer_blocks.0.attn1', | |
# 'down_blocks.0.attentions.1.transformer_blocks.0.attn1', | |
'down_blocks.1.attentions.0.transformer_blocks.0.attn1', | |
# 'down_blocks.1.attentions.1.transformer_blocks.0.attn1', | |
'down_blocks.2.attentions.0.transformer_blocks.0.attn1', | |
'down_blocks.2.attentions.1.transformer_blocks.0.attn1', | |
'mid_block.attentions.0.transformer_blocks.0.attn1', | |
'up_blocks.1.attentions.0.transformer_blocks.0.attn1', | |
'up_blocks.1.attentions.1.transformer_blocks.0.attn1', | |
'up_blocks.1.attentions.2.transformer_blocks.0.attn1', | |
# 'up_blocks.2.attentions.0.transformer_blocks.0.attn1', | |
'up_blocks.2.attentions.1.transformer_blocks.0.attn1', | |
# 'up_blocks.2.attentions.2.transformer_blocks.0.attn1', | |
# 'up_blocks.3.attentions.0.transformer_blocks.0.attn1', | |
# 'up_blocks.3.attentions.1.transformer_blocks.0.attn1', | |
# 'up_blocks.3.attentions.2.transformer_blocks.0.attn1', | |
] | |
CrossAttentionLayers = [ | |
# 'down_blocks.0.attentions.0.transformer_blocks.0.attn2', | |
# 'down_blocks.0.attentions.1.transformer_blocks.0.attn2', | |
'down_blocks.1.attentions.0.transformer_blocks.0.attn2', | |
# 'down_blocks.1.attentions.1.transformer_blocks.0.attn2', | |
'down_blocks.2.attentions.0.transformer_blocks.0.attn2', | |
'down_blocks.2.attentions.1.transformer_blocks.0.attn2', | |
'mid_block.attentions.0.transformer_blocks.0.attn2', | |
'up_blocks.1.attentions.0.transformer_blocks.0.attn2', | |
'up_blocks.1.attentions.1.transformer_blocks.0.attn2', | |
'up_blocks.1.attentions.2.transformer_blocks.0.attn2', | |
# 'up_blocks.2.attentions.0.transformer_blocks.0.attn2', | |
'up_blocks.2.attentions.1.transformer_blocks.0.attn2', | |
# 'up_blocks.2.attentions.2.transformer_blocks.0.attn2', | |
# 'up_blocks.3.attentions.0.transformer_blocks.0.attn2', | |
# 'up_blocks.3.attentions.1.transformer_blocks.0.attn2', | |
# 'up_blocks.3.attentions.2.transformer_blocks.0.attn2' | |
] | |
# CrossAttentionLayers = [ | |
# 'down_blocks.0.attentions.0.transformer_blocks.0.attn2', | |
# 'down_blocks.0.attentions.1.transformer_blocks.0.attn2', | |
# 'down_blocks.1.attentions.0.transformer_blocks.0.attn2', | |
# 'down_blocks.1.attentions.1.transformer_blocks.0.attn2', | |
# 'down_blocks.2.attentions.0.transformer_blocks.0.attn2', | |
# 'down_blocks.2.attentions.1.transformer_blocks.0.attn2', | |
# 'mid_block.attentions.0.transformer_blocks.0.attn2', | |
# 'up_blocks.1.attentions.0.transformer_blocks.0.attn2', | |
# 'up_blocks.1.attentions.1.transformer_blocks.0.attn2', | |
# 'up_blocks.1.attentions.2.transformer_blocks.0.attn2', | |
# 'up_blocks.2.attentions.0.transformer_blocks.0.attn2', | |
# 'up_blocks.2.attentions.1.transformer_blocks.0.attn2', | |
# 'up_blocks.2.attentions.2.transformer_blocks.0.attn2', | |
# 'up_blocks.3.attentions.0.transformer_blocks.0.attn2', | |
# 'up_blocks.3.attentions.1.transformer_blocks.0.attn2', | |
# 'up_blocks.3.attentions.2.transformer_blocks.0.attn2' | |
# ] | |
# CrossAttentionLayers_XL = [ | |
# 'up_blocks.0.attentions.0.transformer_blocks.1.attn2', | |
# 'up_blocks.0.attentions.0.transformer_blocks.2.attn2', | |
# 'up_blocks.0.attentions.0.transformer_blocks.3.attn2', | |
# 'up_blocks.0.attentions.0.transformer_blocks.4.attn2', | |
# 'up_blocks.0.attentions.0.transformer_blocks.5.attn2', | |
# 'up_blocks.0.attentions.0.transformer_blocks.6.attn2', | |
# 'up_blocks.0.attentions.0.transformer_blocks.7.attn2', | |
# ] | |
CrossAttentionLayers_XL = [ | |
'down_blocks.2.attentions.1.transformer_blocks.3.attn2', | |
'down_blocks.2.attentions.1.transformer_blocks.4.attn2', | |
'mid_block.attentions.0.transformer_blocks.0.attn2', | |
'mid_block.attentions.0.transformer_blocks.1.attn2', | |
'mid_block.attentions.0.transformer_blocks.2.attn2', | |
'mid_block.attentions.0.transformer_blocks.3.attn2', | |
'up_blocks.0.attentions.0.transformer_blocks.1.attn2', | |
'up_blocks.0.attentions.0.transformer_blocks.2.attn2', | |
'up_blocks.0.attentions.0.transformer_blocks.3.attn2', | |
'up_blocks.0.attentions.0.transformer_blocks.4.attn2', | |
'up_blocks.0.attentions.0.transformer_blocks.5.attn2', | |
'up_blocks.0.attentions.0.transformer_blocks.6.attn2', | |
'up_blocks.0.attentions.0.transformer_blocks.7.attn2', | |
'up_blocks.1.attentions.0.transformer_blocks.0.attn2' | |
] | |
def split_attention_maps_over_steps(attention_maps): | |
r"""Function for splitting attention maps over steps. | |
Args: | |
attention_maps (dict): Dictionary of attention maps. | |
sampler_order (int): Order of the sampler. | |
""" | |
# This function splits attention maps into unconditional and conditional score and over steps | |
attention_maps_cond = dict() # Maps corresponding to conditional score | |
attention_maps_uncond = dict() # Maps corresponding to unconditional score | |
for layer in attention_maps.keys(): | |
for step_num in range(len(attention_maps[layer])): | |
if step_num not in attention_maps_cond: | |
attention_maps_cond[step_num] = dict() | |
attention_maps_uncond[step_num] = dict() | |
attention_maps_uncond[step_num].update( | |
{layer: attention_maps[layer][step_num][:1]}) | |
attention_maps_cond[step_num].update( | |
{layer: attention_maps[layer][step_num][1:2]}) | |
return attention_maps_cond, attention_maps_uncond | |
def save_attention_heatmaps(attention_maps, tokens_vis, save_dir, prefix): | |
r"""Function to plot heatmaps for attention maps. | |
Args: | |
attention_maps (dict): Dictionary of attention maps per layer | |
save_dir (str): Directory to save attention maps | |
prefix (str): Filename prefix for html files | |
Returns: | |
Heatmaps, one per sample. | |
""" | |
html_names = [] | |
idx = 0 | |
html_list = [] | |
for layer in attention_maps.keys(): | |
if idx == 0: | |
# import ipdb;ipdb.set_trace() | |
# create a set of html files. | |
batch_size = attention_maps[layer].shape[0] | |
for sample_num in range(batch_size): | |
# html path | |
html_rel_path = os.path.join('sample_{}'.format( | |
sample_num), '{}.html'.format(prefix)) | |
html_names.append(html_rel_path) | |
html_path = os.path.join(save_dir, html_rel_path) | |
os.makedirs(os.path.dirname(html_path), exist_ok=True) | |
html_list.append(open(html_path, 'wt')) | |
html_list[sample_num].write( | |
'<html><head></head><body><table>\n') | |
for sample_num in range(batch_size): | |
save_path = os.path.join(save_dir, 'sample_{}'.format(sample_num), | |
prefix, 'layer_{}'.format(layer)) + '.jpg' | |
Path(os.path.dirname(save_path)).mkdir(parents=True, exist_ok=True) | |
layer_name = 'layer_{}'.format(layer) | |
html_list[sample_num].write( | |
f'<tr><td><h1>{layer_name}</h1></td></tr>\n') | |
prefix_stem = prefix.split('/')[-1] | |
relative_image_path = os.path.join( | |
prefix_stem, 'layer_{}'.format(layer)) + '.jpg' | |
html_list[sample_num].write( | |
f'<tr><td><img src=\"{relative_image_path}\"></td></tr>\n') | |
plt.figure() | |
plt.clf() | |
nrows = 2 | |
ncols = 7 | |
fig, axs = plt.subplots(nrows=nrows, ncols=ncols) | |
fig.set_figheight(8) | |
fig.set_figwidth(28.5) | |
# axs[0].set_aspect('equal') | |
# axs[1].set_aspect('equal') | |
# axs[2].set_aspect('equal') | |
# axs[3].set_aspect('equal') | |
# axs[4].set_aspect('equal') | |
# axs[5].set_aspect('equal') | |
cmap = plt.get_cmap('YlOrRd') | |
for rid in range(nrows): | |
for cid in range(ncols): | |
tid = rid*ncols + cid | |
# import ipdb;ipdb.set_trace() | |
attention_map_cur = attention_maps[layer][sample_num, :, :, tid].numpy( | |
) | |
vmax = float(attention_map_cur.max()) | |
vmin = float(attention_map_cur.min()) | |
sns.heatmap( | |
attention_map_cur, annot=False, cbar=False, ax=axs[rid, cid], | |
cmap=cmap, vmin=vmin, vmax=vmax | |
) | |
axs[rid, cid].set_xlabel(tokens_vis[tid]) | |
# axs[0].set_xlabel('Self attention') | |
# axs[1].set_xlabel('Temporal attention') | |
# axs[2].set_xlabel('T5 text attention') | |
# axs[3].set_xlabel('CLIP text attention') | |
# axs[4].set_xlabel('CLIP image attention') | |
# axs[5].set_xlabel('Null text token') | |
norm = mpl.colors.Normalize(vmin=vmin, vmax=vmax) | |
sm = plt.cm.ScalarMappable(cmap=cmap, norm=norm) | |
# fig.colorbar(sm, cax=axs[6]) | |
fig.tight_layout() | |
plt.savefig(save_path, dpi=64) | |
plt.close('all') | |
if idx == (len(attention_maps.keys()) - 1): | |
for sample_num in range(batch_size): | |
html_list[sample_num].write('</table></body></html>') | |
html_list[sample_num].close() | |
idx += 1 | |
return html_names | |
def create_recursive_html_link(html_path, save_dir): | |
r"""Function for creating recursive html links. | |
If the path is dir1/dir2/dir3/*.html, | |
we create chained directories | |
-dir1 | |
dir1.html (has links to all children) | |
-dir2 | |
dir2.html (has links to all children) | |
-dir3 | |
dir3.html | |
Args: | |
html_path (str): Path to html file. | |
save_dir (str): Save directory. | |
""" | |
html_path_split = os.path.splitext(html_path)[0].split('/') | |
if len(html_path_split) == 1: | |
return | |
# First create the root directory | |
root_dir = html_path_split[0] | |
child_dir = html_path_split[1] | |
cur_html_path = os.path.join(save_dir, '{}.html'.format(root_dir)) | |
if os.path.exists(cur_html_path): | |
fp = open(cur_html_path, 'r') | |
lines_written = fp.readlines() | |
fp.close() | |
fp = open(cur_html_path, 'a+') | |
child_path = os.path.join(root_dir, f'{child_dir}.html') | |
line_to_write = f'<tr><td><a href=\"{child_path}\">{child_dir}</a></td></tr>\n' | |
if line_to_write not in lines_written: | |
fp.write('<html><head></head><body><table>\n') | |
fp.write(line_to_write) | |
fp.write('</table></body></html>') | |
fp.close() | |
else: | |
fp = open(cur_html_path, 'w') | |
child_path = os.path.join(root_dir, f'{child_dir}.html') | |
line_to_write = f'<tr><td><a href=\"{child_path}\">{child_dir}</a></td></tr>\n' | |
fp.write('<html><head></head><body><table>\n') | |
fp.write(line_to_write) | |
fp.write('</table></body></html>') | |
fp.close() | |
child_path = '/'.join(html_path.split('/')[1:]) | |
save_dir = os.path.join(save_dir, root_dir) | |
create_recursive_html_link(child_path, save_dir) | |
def visualize_attention_maps(attention_maps_all, save_dir, width, height, tokens_vis): | |
r"""Function to visualize attention maps. | |
Args: | |
save_dir (str): Path to save attention maps | |
batch_size (int): Batch size | |
sampler_order (int): Sampler order | |
""" | |
rand_name = list(attention_maps_all.keys())[0] | |
nsteps = len(attention_maps_all[rand_name]) | |
hw_ori = width * height | |
# html_path = save_dir + '.html' | |
text_input = save_dir.split('/')[-1] | |
# f = open(html_path, 'wt') | |
all_html_paths = [] | |
for step_num in range(0, nsteps, 5): | |
# if cond_id == 'cond': | |
# attention_maps_cur = attention_maps_cond[step_num] | |
# else: | |
# attention_maps_cur = attention_maps_uncond[step_num] | |
attention_maps = dict() | |
for layer in attention_maps_all.keys(): | |
attention_ind = attention_maps_all[layer][step_num].cpu() | |
# Attention maps are of shape [batch_size, nkeys, 77] | |
# since they are averaged out while collecting from hooks to save memory. | |
# Now split the heads from batch dimension | |
bs, hw, nclip = attention_ind.shape | |
down_ratio = np.sqrt(hw_ori // hw) | |
width_cur = int(width // down_ratio) | |
height_cur = int(height // down_ratio) | |
attention_ind = attention_ind.reshape( | |
bs, height_cur, width_cur, nclip) | |
attention_maps[layer] = attention_ind | |
# Obtain heatmaps corresponding to random heads and individual heads | |
html_names = save_attention_heatmaps( | |
attention_maps, tokens_vis, save_dir=save_dir, prefix='step_{}/attention_maps_cond'.format( | |
step_num) | |
) | |
# Write the logic for recursively creating pages | |
for html_name_cur in html_names: | |
all_html_paths.append(os.path.join(text_input, html_name_cur)) | |
save_dir_root = '/'.join(save_dir.split('/')[0:-1]) | |
for html_pth in all_html_paths: | |
create_recursive_html_link(html_pth, save_dir_root) | |
def plot_attention_maps(atten_map_list, obj_tokens, save_dir, seed, tokens_vis=None): | |
for i, attn_map in enumerate(atten_map_list): | |
n_obj = len(attn_map) | |
plt.figure() | |
plt.clf() | |
fig, axs = plt.subplots( | |
ncols=n_obj+1, gridspec_kw=dict(width_ratios=[1 for _ in range(n_obj)]+[0.1])) | |
fig.set_figheight(3) | |
fig.set_figwidth(3*n_obj+0.1) | |
cmap = plt.get_cmap('YlOrRd') | |
vmax = 0 | |
vmin = 1 | |
for tid in range(n_obj): | |
attention_map_cur = attn_map[tid] | |
vmax = max(vmax, float(attention_map_cur.max())) | |
vmin = min(vmin, float(attention_map_cur.min())) | |
for tid in range(n_obj): | |
sns.heatmap( | |
attn_map[tid][0], annot=False, cbar=False, ax=axs[tid], | |
cmap=cmap, vmin=vmin, vmax=vmax | |
) | |
axs[tid].set_axis_off() | |
if tokens_vis is not None: | |
if tid == n_obj-1: | |
axs_xlabel = 'other tokens' | |
else: | |
axs_xlabel = '' | |
for token_id in obj_tokens[tid]: | |
axs_xlabel += ' ' + tokens_vis[token_id.item() - | |
1][:-len('</w>')] | |
axs[tid].set_title(axs_xlabel) | |
norm = mpl.colors.Normalize(vmin=vmin, vmax=vmax) | |
sm = plt.cm.ScalarMappable(cmap=cmap, norm=norm) | |
fig.colorbar(sm, cax=axs[-1]) | |
fig.tight_layout() | |
canvas = fig.canvas | |
canvas.draw() | |
width, height = canvas.get_width_height() | |
img = np.frombuffer(canvas.tostring_rgb(), | |
dtype='uint8').reshape((height, width, 3)) | |
plt.savefig(os.path.join( | |
save_dir, 'average_seed%d_attn%d.jpg' % (seed, i)), dpi=100) | |
plt.close('all') | |
return img | |
def get_average_attention_maps(attention_maps, save_dir, width, height, obj_tokens, seed=0, tokens_vis=None, | |
preprocess=False): | |
r"""Function to visualize attention maps. | |
Args: | |
save_dir (str): Path to save attention maps | |
batch_size (int): Batch size | |
sampler_order (int): Sampler order | |
""" | |
# Split attention maps over steps | |
attention_maps_cond, _ = split_attention_maps_over_steps( | |
attention_maps | |
) | |
nsteps = len(attention_maps_cond) | |
hw_ori = width * height | |
attention_maps = [] | |
for obj_token in obj_tokens: | |
attention_maps.append([]) | |
for step_num in range(nsteps): | |
attention_maps_cur = attention_maps_cond[step_num] | |
for layer in attention_maps_cur.keys(): | |
if step_num < 10 or layer not in CrossAttentionLayers: | |
continue | |
attention_ind = attention_maps_cur[layer].cpu() | |
# Attention maps are of shape [batch_size, nkeys, 77] | |
# since they are averaged out while collecting from hooks to save memory. | |
# Now split the heads from batch dimension | |
bs, hw, nclip = attention_ind.shape | |
down_ratio = np.sqrt(hw_ori // hw) | |
width_cur = int(width // down_ratio) | |
height_cur = int(height // down_ratio) | |
attention_ind = attention_ind.reshape( | |
bs, height_cur, width_cur, nclip) | |
for obj_id, obj_token in enumerate(obj_tokens): | |
if obj_token[0] == -1: | |
attention_map_prev = torch.stack( | |
[attention_maps[i][-1] for i in range(obj_id)]).sum(0) | |
attention_maps[obj_id].append( | |
attention_map_prev.max()-attention_map_prev) | |
else: | |
obj_attention_map = attention_ind[:, :, :, obj_token].max(-1, True)[ | |
0].permute([3, 0, 1, 2]) | |
# obj_attention_map = attention_ind[:, :, :, obj_token].mean(-1, True).permute([3, 0, 1, 2]) | |
obj_attention_map = torchvision.transforms.functional.resize(obj_attention_map, (height, width), | |
interpolation=torchvision.transforms.InterpolationMode.BICUBIC, antialias=True) | |
attention_maps[obj_id].append(obj_attention_map) | |
attention_maps_averaged = [] | |
for obj_id, obj_token in enumerate(obj_tokens): | |
if obj_id == len(obj_tokens) - 1: | |
attention_maps_averaged.append( | |
torch.cat(attention_maps[obj_id]).mean(0)) | |
else: | |
attention_maps_averaged.append( | |
torch.cat(attention_maps[obj_id]).mean(0)) | |
attention_maps_averaged_normalized = [] | |
attention_maps_averaged_sum = torch.cat(attention_maps_averaged).sum(0) | |
for obj_id, obj_token in enumerate(obj_tokens): | |
attention_maps_averaged_normalized.append( | |
attention_maps_averaged[obj_id]/attention_maps_averaged_sum) | |
if obj_tokens[-1][0] != -1: | |
attention_maps_averaged_normalized = ( | |
torch.cat(attention_maps_averaged)/0.001).softmax(0) | |
attention_maps_averaged_normalized = [ | |
attention_maps_averaged_normalized[i:i+1] for i in range(attention_maps_averaged_normalized.shape[0])] | |
if preprocess: | |
selem = square(5) | |
selem = square(3) | |
selem = square(1) | |
attention_maps_averaged_eroded = [erosion(skimage.img_as_float( | |
map[0].numpy()*255), selem) for map in attention_maps_averaged_normalized[:2]] | |
attention_maps_averaged_eroded = [(torch.from_numpy(map).unsqueeze( | |
0)/255. > 0.8).float() for map in attention_maps_averaged_eroded] | |
attention_maps_averaged_eroded.append( | |
1 - torch.cat(attention_maps_averaged_eroded).sum(0, True)) | |
plot_attention_maps([attention_maps_averaged, attention_maps_averaged_normalized, | |
attention_maps_averaged_eroded], obj_tokens, save_dir, seed, tokens_vis) | |
attention_maps_averaged_eroded = [attn_mask.unsqueeze(1).repeat( | |
[1, 4, 1, 1]).cuda() for attn_mask in attention_maps_averaged_eroded] | |
return attention_maps_averaged_eroded | |
else: | |
plot_attention_maps([attention_maps_averaged, attention_maps_averaged_normalized], | |
obj_tokens, save_dir, seed, tokens_vis) | |
attention_maps_averaged_normalized = [attn_mask.unsqueeze(1).repeat( | |
[1, 4, 1, 1]).cuda() for attn_mask in attention_maps_averaged_normalized] | |
return attention_maps_averaged_normalized | |
def get_average_attention_maps_threshold(attention_maps, save_dir, width, height, obj_tokens, seed=0, threshold=0.02): | |
r"""Function to visualize attention maps. | |
Args: | |
save_dir (str): Path to save attention maps | |
batch_size (int): Batch size | |
sampler_order (int): Sampler order | |
""" | |
_EPS = 1e-8 | |
# Split attention maps over steps | |
attention_maps_cond, _ = split_attention_maps_over_steps( | |
attention_maps | |
) | |
nsteps = len(attention_maps_cond) | |
hw_ori = width * height | |
attention_maps = [] | |
for obj_token in obj_tokens: | |
attention_maps.append([]) | |
# for each side prompt, get attention maps for all steps and all layers | |
for step_num in range(nsteps): | |
attention_maps_cur = attention_maps_cond[step_num] | |
for layer in attention_maps_cur.keys(): | |
attention_ind = attention_maps_cur[layer].cpu() | |
bs, hw, nclip = attention_ind.shape | |
down_ratio = np.sqrt(hw_ori // hw) | |
width_cur = int(width // down_ratio) | |
height_cur = int(height // down_ratio) | |
attention_ind = attention_ind.reshape( | |
bs, height_cur, width_cur, nclip) | |
for obj_id, obj_token in enumerate(obj_tokens): | |
if attention_ind.shape[1] > width//2: | |
continue | |
if obj_token[0] != -1: | |
obj_attention_map = attention_ind[:, :, :, | |
obj_token].mean(-1, True).permute([3, 0, 1, 2]) | |
obj_attention_map = torchvision.transforms.functional.resize(obj_attention_map, (height, width), | |
interpolation=torchvision.transforms.InterpolationMode.BICUBIC, antialias=True) | |
attention_maps[obj_id].append(obj_attention_map) | |
# average of all steps and layers, thresholding | |
attention_maps_thres = [] | |
attention_maps_averaged = [] | |
for obj_id, obj_token in enumerate(obj_tokens): | |
if obj_token[0] != -1: | |
average_map = torch.cat(attention_maps[obj_id]).mean(0) | |
attention_maps_averaged.append(average_map) | |
attention_maps_thres.append((average_map > threshold).float()) | |
# get the remaining region except for the original prompt | |
attention_maps_averaged_normalized = [] | |
attention_maps_averaged_sum = torch.cat(attention_maps_thres).sum(0) + _EPS | |
for obj_id, obj_token in enumerate(obj_tokens): | |
if obj_token[0] != -1: | |
attention_maps_averaged_normalized.append( | |
attention_maps_thres[obj_id]/attention_maps_averaged_sum) | |
else: | |
attention_map_prev = torch.stack( | |
attention_maps_averaged_normalized).sum(0) | |
attention_maps_averaged_normalized.append(1.-attention_map_prev) | |
plot_attention_maps( | |
[attention_maps_averaged, attention_maps_averaged_normalized], save_dir, seed) | |
attention_maps_averaged_normalized = [attn_mask.unsqueeze(1).repeat( | |
[1, 4, 1, 1]).cuda() for attn_mask in attention_maps_averaged_normalized] | |
# attention_maps_averaged_normalized = attention_maps_averaged_normalized.unsqueeze(1).repeat([1, 4, 1, 1]).cuda() | |
return attention_maps_averaged_normalized | |
def get_token_maps(selfattn_maps, crossattn_maps, n_maps, save_dir, width, height, obj_tokens, kmeans_seed=0, tokens_vis=None, | |
preprocess=False, segment_threshold=0.3, num_segments=5, return_vis=False, save_attn=False): | |
r"""Function to visualize attention maps. | |
Args: | |
save_dir (str): Path to save attention maps | |
batch_size (int): Batch size | |
sampler_order (int): Sampler order | |
""" | |
resolution = 32 | |
# attn_maps_1024 = [attn_map for attn_map in selfattn_maps.values( | |
# ) if attn_map.shape[1] == resolution**2] | |
# attn_maps_1024 = torch.cat(attn_maps_1024).mean(0).cpu().numpy() | |
attn_maps_1024 = {8: [], 16: [], 32: [], 64: []} | |
for attn_map in selfattn_maps.values(): | |
resolution_map = np.sqrt(attn_map.shape[1]).astype(int) | |
if resolution_map != resolution: | |
continue | |
# attn_map = torch.nn.functional.interpolate(rearrange(attn_map, '1 c (h w) -> 1 c h w', h=resolution_map), (resolution, resolution), | |
# mode='bicubic', antialias=True) | |
# attn_map = rearrange(attn_map, '1 (h w) a b -> 1 (a b) h w', h=resolution_map) | |
attn_map = attn_map.reshape( | |
1, resolution_map, resolution_map, resolution_map**2).permute([3, 0, 1, 2]).float() | |
attn_map = torch.nn.functional.interpolate(attn_map, (resolution, resolution), | |
mode='bicubic', antialias=True) | |
attn_maps_1024[resolution_map].append(attn_map.permute([1, 2, 3, 0]).reshape( | |
1, resolution**2, resolution_map**2)) | |
attn_maps_1024 = torch.cat([torch.cat(v).mean(0).cpu() | |
for v in attn_maps_1024.values() if len(v) > 0], -1).numpy() | |
if save_attn: | |
print('saving self-attention maps...', attn_maps_1024.shape) | |
torch.save(torch.from_numpy(attn_maps_1024), | |
'results/maps/selfattn_maps.pth') | |
seed_everything(kmeans_seed) | |
# import ipdb;ipdb.set_trace() | |
# kmeans = KMeans(n_clusters=num_segments, | |
# n_init=10).fit(attn_maps_1024) | |
# clusters = kmeans.labels_ | |
# clusters = clusters.reshape(resolution, resolution) | |
# mesh = np.array(np.meshgrid(range(resolution), range(resolution), indexing='ij'), dtype=np.float32)/resolution | |
# dists = mesh.reshape(2, -1).T | |
# delta = 0.01 | |
# spatial_sim = rbf_kernel(dists, dists)*delta | |
sc = SpectralClustering(num_segments, affinity='precomputed', n_init=100, | |
assign_labels='kmeans') | |
clusters = sc.fit_predict(attn_maps_1024) | |
clusters = clusters.reshape(resolution, resolution) | |
fig = plt.figure() | |
plt.imshow(clusters) | |
plt.axis('off') | |
plt.savefig(os.path.join(save_dir, 'segmentation_k%d_seed%d.jpg' % (num_segments, kmeans_seed)), | |
bbox_inches='tight', pad_inches=0) | |
if return_vis: | |
canvas = fig.canvas | |
canvas.draw() | |
cav_width, cav_height = canvas.get_width_height() | |
segments_vis = np.frombuffer(canvas.tostring_rgb(), | |
dtype='uint8').reshape((cav_height, cav_width, 3)) | |
plt.close() | |
# label the segmentation mask using cross-attention maps | |
cross_attn_maps_1024 = [] | |
for attn_map in crossattn_maps.values(): | |
resolution_map = np.sqrt(attn_map.shape[1]).astype(int) | |
# if resolution_map != 16: | |
# continue | |
attn_map = attn_map.reshape( | |
1, resolution_map, resolution_map, -1).permute([0, 3, 1, 2]).float() | |
attn_map = torch.nn.functional.interpolate(attn_map, (resolution, resolution), | |
mode='bicubic', antialias=True) | |
cross_attn_maps_1024.append(attn_map.permute([0, 2, 3, 1])) | |
cross_attn_maps_1024 = torch.cat( | |
cross_attn_maps_1024).mean(0).cpu().numpy() | |
normalized_span_maps = [] | |
for token_ids in obj_tokens: | |
token_ids = [token_id for token_id in token_ids if token_id < 77] | |
span_token_maps = cross_attn_maps_1024[:, :, token_ids.numpy()] | |
normalized_span_map = np.zeros_like(span_token_maps) | |
for i in range(span_token_maps.shape[-1]): | |
curr_noun_map = span_token_maps[:, :, i] | |
normalized_span_map[:, :, i] = ( | |
# curr_noun_map - np.abs(curr_noun_map.min())) / curr_noun_map.max() | |
curr_noun_map - np.abs(curr_noun_map.min())) / (curr_noun_map.max()-curr_noun_map.min()) | |
normalized_span_maps.append(normalized_span_map) | |
foreground_token_maps = [np.zeros([clusters.shape[0], clusters.shape[1]]).squeeze( | |
) for normalized_span_map in normalized_span_maps] | |
background_map = np.zeros([clusters.shape[0], clusters.shape[1]]).squeeze() | |
for c in range(num_segments): | |
cluster_mask = np.zeros_like(clusters) | |
cluster_mask[clusters == c] = 1. | |
is_foreground = False | |
for normalized_span_map, foreground_nouns_map, token_ids in zip(normalized_span_maps, foreground_token_maps, obj_tokens): | |
score_maps = [cluster_mask * normalized_span_map[:, :, i] | |
for i in range(len(token_ids))] | |
scores = [score_map.sum() / cluster_mask.sum() | |
for score_map in score_maps] | |
if max(scores) > segment_threshold: | |
foreground_nouns_map += cluster_mask | |
is_foreground = True | |
if not is_foreground: | |
background_map += cluster_mask | |
foreground_token_maps.append(background_map) | |
# resize the token maps and visualization | |
resized_token_maps = torch.cat([torch.nn.functional.interpolate(torch.from_numpy(token_map).unsqueeze(0).unsqueeze( | |
0), (height, width), mode='bicubic', antialias=True)[0] for token_map in foreground_token_maps]).clamp(0, 1) | |
resized_token_maps = resized_token_maps / \ | |
(resized_token_maps.sum(0, True)+1e-8) | |
resized_token_maps = [token_map.unsqueeze( | |
0) for token_map in resized_token_maps] | |
foreground_token_maps = [token_map[None, :, :] | |
for token_map in foreground_token_maps] | |
if preprocess: | |
selem = square(5) | |
eroded_token_maps = torch.stack([torch.from_numpy(erosion(skimage.img_as_float( | |
map[0].numpy()*255), selem))/255. for map in resized_token_maps[:-1]]).clamp(0, 1) | |
# import ipdb; ipdb.set_trace() | |
eroded_background_maps = (1-eroded_token_maps.sum(0, True)).clamp(0, 1) | |
eroded_token_maps = torch.cat([eroded_token_maps, eroded_background_maps]) | |
eroded_token_maps = eroded_token_maps / (eroded_token_maps.sum(0, True)+1e-8) | |
resized_token_maps = [token_map.unsqueeze( | |
0) for token_map in eroded_token_maps] | |
token_maps_vis = plot_attention_maps([foreground_token_maps, resized_token_maps], obj_tokens, | |
save_dir, kmeans_seed, tokens_vis) | |
resized_token_maps = [token_map.unsqueeze(1).repeat( | |
[1, 4, 1, 1]).to(attn_map.dtype).cuda() for token_map in resized_token_maps] | |
if return_vis: | |
return resized_token_maps, segments_vis, token_maps_vis | |
else: | |
return resized_token_maps | |