|
import streamlit as st |
|
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM |
|
|
|
|
|
st.set_page_config(page_title="Khmer Text Summarization", page_icon="π", layout="wide") |
|
|
|
import torch |
|
|
|
MODEL_ID = "songhieng/khmer-mt5-summarization-duplicated" |
|
|
|
@st.cache_resource |
|
def load_model(): |
|
tokenizer = AutoTokenizer.from_pretrained(MODEL_ID) |
|
model = AutoModelForSeq2SeqLM.from_pretrained(MODEL_ID) |
|
return tokenizer, model |
|
|
|
tokenizer, model = load_model() |
|
|
|
st.title("π Khmer Text Summarization") |
|
st.markdown("Input Khmer text and get a concise summary powered by your fine-tuned mT5 model.") |
|
|
|
|
|
st.sidebar.header("Settings") |
|
max_length = st.sidebar.slider("Max summary length", 50, 300, 150, step=10) |
|
min_length = st.sidebar.slider("Min summary length", 10, 100, 30, step=5) |
|
num_beams = st.sidebar.slider("Number of beams", 1, 10, 4) |
|
|
|
|
|
text = st.text_area("βοΈ Paste Khmer text below:", height=300, placeholder="ααΌαααΆαα’αααααααααααα
ααΈαααβ¦") |
|
|
|
if st.button("π Summarize"): |
|
if not text.strip(): |
|
st.warning("β οΈ Please enter some text.") |
|
else: |
|
with st.spinner("Summarizing..."): |
|
inputs = tokenizer(text, return_tensors="pt", truncation=True) |
|
summary_ids = model.generate( |
|
**inputs, |
|
max_length=max_length, |
|
min_length=min_length, |
|
num_beams=num_beams, |
|
length_penalty=2.0, |
|
early_stopping=True |
|
) |
|
summary = tokenizer.decode(summary_ids[0], skip_special_tokens=True) |
|
|
|
st.subheader("π Summary") |
|
st.success(summary) |
|
|