|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import datetime |
|
import unittest |
|
|
|
from transformers import CodeGenConfig, is_torch_available |
|
from transformers.testing_utils import require_torch, slow, torch_device |
|
|
|
from ...generation.test_utils import GenerationTesterMixin |
|
from ...test_configuration_common import ConfigTester |
|
from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask |
|
from ...test_pipeline_mixin import PipelineTesterMixin |
|
|
|
|
|
if is_torch_available(): |
|
import torch |
|
|
|
from transformers import CODEGEN_PRETRAINED_MODEL_ARCHIVE_LIST, AutoTokenizer, CodeGenForCausalLM, CodeGenModel |
|
|
|
|
|
class CodeGenModelTester: |
|
def __init__( |
|
self, |
|
parent, |
|
batch_size=14, |
|
seq_length=7, |
|
is_training=True, |
|
use_token_type_ids=True, |
|
use_input_mask=True, |
|
use_labels=True, |
|
use_mc_token_ids=True, |
|
vocab_size=256, |
|
hidden_size=32, |
|
rotary_dim=4, |
|
num_hidden_layers=5, |
|
num_attention_heads=4, |
|
intermediate_size=37, |
|
hidden_act="gelu", |
|
hidden_dropout_prob=0.0, |
|
attention_probs_dropout_prob=0.0, |
|
max_position_embeddings=512, |
|
type_vocab_size=16, |
|
type_sequence_label_size=2, |
|
initializer_range=0.02, |
|
num_labels=3, |
|
num_choices=4, |
|
): |
|
self.parent = parent |
|
self.batch_size = batch_size |
|
self.seq_length = seq_length |
|
self.is_training = is_training |
|
self.use_token_type_ids = use_token_type_ids |
|
self.use_input_mask = use_input_mask |
|
self.use_labels = use_labels |
|
self.use_mc_token_ids = use_mc_token_ids |
|
self.vocab_size = vocab_size |
|
self.hidden_size = hidden_size |
|
self.rotary_dim = rotary_dim |
|
self.num_hidden_layers = num_hidden_layers |
|
self.num_attention_heads = num_attention_heads |
|
self.intermediate_size = intermediate_size |
|
self.hidden_act = hidden_act |
|
self.hidden_dropout_prob = hidden_dropout_prob |
|
self.attention_probs_dropout_prob = attention_probs_dropout_prob |
|
self.max_position_embeddings = max_position_embeddings |
|
self.type_vocab_size = type_vocab_size |
|
self.type_sequence_label_size = type_sequence_label_size |
|
self.initializer_range = initializer_range |
|
self.num_labels = num_labels |
|
self.num_choices = num_choices |
|
self.scope = None |
|
self.bos_token_id = vocab_size - 1 |
|
self.eos_token_id = vocab_size - 1 |
|
self.pad_token_id = vocab_size - 1 |
|
|
|
def get_large_model_config(self): |
|
return CodeGenConfig.from_pretrained("Salesforce/codegen-2B-mono") |
|
|
|
def prepare_config_and_inputs(self): |
|
input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size) |
|
|
|
input_mask = None |
|
if self.use_input_mask: |
|
input_mask = random_attention_mask([self.batch_size, self.seq_length]) |
|
|
|
token_type_ids = None |
|
if self.use_token_type_ids: |
|
token_type_ids = ids_tensor([self.batch_size, self.seq_length], self.type_vocab_size) |
|
|
|
mc_token_ids = None |
|
if self.use_mc_token_ids: |
|
mc_token_ids = ids_tensor([self.batch_size, self.num_choices], self.seq_length) |
|
|
|
sequence_labels = None |
|
token_labels = None |
|
choice_labels = None |
|
if self.use_labels: |
|
sequence_labels = ids_tensor([self.batch_size], self.type_sequence_label_size) |
|
token_labels = ids_tensor([self.batch_size, self.seq_length], self.num_labels) |
|
choice_labels = ids_tensor([self.batch_size], self.num_choices) |
|
|
|
config = self.get_config() |
|
|
|
head_mask = ids_tensor([self.num_hidden_layers, self.num_attention_heads], 2) |
|
|
|
return ( |
|
config, |
|
input_ids, |
|
input_mask, |
|
head_mask, |
|
token_type_ids, |
|
mc_token_ids, |
|
sequence_labels, |
|
token_labels, |
|
choice_labels, |
|
) |
|
|
|
def get_config(self): |
|
return CodeGenConfig( |
|
vocab_size=self.vocab_size, |
|
n_embd=self.hidden_size, |
|
n_layer=self.num_hidden_layers, |
|
n_head=self.num_attention_heads, |
|
intermediate_size=self.intermediate_size, |
|
hidden_act=self.hidden_act, |
|
hidden_dropout_prob=self.hidden_dropout_prob, |
|
attention_probs_dropout_prob=self.attention_probs_dropout_prob, |
|
n_positions=self.max_position_embeddings, |
|
type_vocab_size=self.type_vocab_size, |
|
initializer_range=self.initializer_range, |
|
use_cache=True, |
|
bos_token_id=self.bos_token_id, |
|
eos_token_id=self.eos_token_id, |
|
pad_token_id=self.pad_token_id, |
|
rotary_dim=self.rotary_dim, |
|
) |
|
|
|
def prepare_config_and_inputs_for_decoder(self): |
|
( |
|
config, |
|
input_ids, |
|
input_mask, |
|
head_mask, |
|
token_type_ids, |
|
mc_token_ids, |
|
sequence_labels, |
|
token_labels, |
|
choice_labels, |
|
) = self.prepare_config_and_inputs() |
|
|
|
encoder_hidden_states = floats_tensor([self.batch_size, self.seq_length, self.hidden_size]) |
|
encoder_attention_mask = ids_tensor([self.batch_size, self.seq_length], vocab_size=2) |
|
|
|
return ( |
|
config, |
|
input_ids, |
|
input_mask, |
|
head_mask, |
|
token_type_ids, |
|
sequence_labels, |
|
token_labels, |
|
choice_labels, |
|
encoder_hidden_states, |
|
encoder_attention_mask, |
|
) |
|
|
|
def create_and_check_codegen_model(self, config, input_ids, input_mask, head_mask, token_type_ids, *args): |
|
model = CodeGenModel(config=config) |
|
model.to(torch_device) |
|
model.eval() |
|
|
|
result = model(input_ids, token_type_ids=token_type_ids, head_mask=head_mask) |
|
result = model(input_ids, token_type_ids=token_type_ids) |
|
result = model(input_ids) |
|
|
|
self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size)) |
|
self.parent.assertEqual(len(result.past_key_values), config.n_layer) |
|
|
|
def create_and_check_codegen_model_past(self, config, input_ids, input_mask, head_mask, token_type_ids, *args): |
|
model = CodeGenModel(config=config) |
|
model.to(torch_device) |
|
model.eval() |
|
|
|
|
|
outputs = model(input_ids, token_type_ids=token_type_ids, use_cache=True) |
|
outputs_use_cache_conf = model(input_ids, token_type_ids=token_type_ids) |
|
outputs_no_past = model(input_ids, token_type_ids=token_type_ids, use_cache=False) |
|
|
|
self.parent.assertTrue(len(outputs) == len(outputs_use_cache_conf)) |
|
self.parent.assertTrue(len(outputs) == len(outputs_no_past) + 1) |
|
|
|
output, past = outputs.to_tuple() |
|
|
|
|
|
next_tokens = ids_tensor((self.batch_size, 1), config.vocab_size) |
|
next_token_types = ids_tensor([self.batch_size, 1], self.type_vocab_size) |
|
|
|
|
|
next_input_ids = torch.cat([input_ids, next_tokens], dim=-1) |
|
next_token_type_ids = torch.cat([token_type_ids, next_token_types], dim=-1) |
|
|
|
output_from_no_past = model(next_input_ids, token_type_ids=next_token_type_ids)["last_hidden_state"] |
|
output_from_past = model(next_tokens, token_type_ids=next_token_types, past_key_values=past)[ |
|
"last_hidden_state" |
|
] |
|
|
|
|
|
random_slice_idx = ids_tensor((1,), output_from_past.shape[-1]).item() |
|
output_from_no_past_slice = output_from_no_past[:, -1, random_slice_idx].detach() |
|
output_from_past_slice = output_from_past[:, 0, random_slice_idx].detach() |
|
|
|
|
|
self.parent.assertTrue(torch.allclose(output_from_past_slice, output_from_no_past_slice, atol=1e-3)) |
|
|
|
def create_and_check_codegen_model_attention_mask_past( |
|
self, config, input_ids, input_mask, head_mask, token_type_ids, *args |
|
): |
|
model = CodeGenModel(config=config) |
|
model.to(torch_device) |
|
model.eval() |
|
|
|
|
|
attn_mask = torch.ones(input_ids.shape, dtype=torch.long, device=torch_device) |
|
half_seq_length = self.seq_length // 2 |
|
attn_mask[:, half_seq_length:] = 0 |
|
|
|
|
|
output, past = model(input_ids, attention_mask=attn_mask).to_tuple() |
|
|
|
|
|
next_tokens = ids_tensor((self.batch_size, 1), config.vocab_size) |
|
|
|
|
|
random_seq_idx_to_change = ids_tensor((1,), half_seq_length).item() + 1 |
|
random_other_next_tokens = ids_tensor((self.batch_size, 1), config.vocab_size).squeeze(-1) |
|
input_ids[:, -random_seq_idx_to_change] = random_other_next_tokens |
|
|
|
|
|
next_input_ids = torch.cat([input_ids, next_tokens], dim=-1) |
|
attn_mask = torch.cat( |
|
[attn_mask, torch.ones((attn_mask.shape[0], 1), dtype=torch.long, device=torch_device)], |
|
dim=1, |
|
) |
|
|
|
|
|
output_from_no_past = model(next_input_ids, attention_mask=attn_mask)["last_hidden_state"] |
|
output_from_past = model(next_tokens, past_key_values=past, attention_mask=attn_mask)["last_hidden_state"] |
|
|
|
|
|
random_slice_idx = ids_tensor((1,), output_from_past.shape[-1]).item() |
|
output_from_no_past_slice = output_from_no_past[:, -1, random_slice_idx].detach() |
|
output_from_past_slice = output_from_past[:, 0, random_slice_idx].detach() |
|
|
|
|
|
self.parent.assertTrue(torch.allclose(output_from_past_slice, output_from_no_past_slice, atol=1e-3)) |
|
|
|
def create_and_check_codegen_model_past_large_inputs( |
|
self, config, input_ids, input_mask, head_mask, token_type_ids, *args |
|
): |
|
model = CodeGenModel(config=config) |
|
model.to(torch_device) |
|
model.eval() |
|
|
|
|
|
outputs = model(input_ids, token_type_ids=token_type_ids, attention_mask=input_mask, use_cache=True) |
|
|
|
output, past = outputs.to_tuple() |
|
|
|
|
|
next_tokens = ids_tensor((self.batch_size, 3), config.vocab_size) |
|
next_token_types = ids_tensor([self.batch_size, 3], self.type_vocab_size) |
|
next_mask = ids_tensor((self.batch_size, 3), vocab_size=2) |
|
|
|
|
|
next_input_ids = torch.cat([input_ids, next_tokens], dim=-1) |
|
next_token_type_ids = torch.cat([token_type_ids, next_token_types], dim=-1) |
|
next_attention_mask = torch.cat([input_mask, next_mask], dim=-1) |
|
|
|
output_from_no_past = model( |
|
next_input_ids, token_type_ids=next_token_type_ids, attention_mask=next_attention_mask |
|
)["last_hidden_state"] |
|
output_from_past = model( |
|
next_tokens, token_type_ids=next_token_types, attention_mask=next_attention_mask, past_key_values=past |
|
)["last_hidden_state"] |
|
self.parent.assertTrue(output_from_past.shape[1] == next_tokens.shape[1]) |
|
|
|
|
|
random_slice_idx = ids_tensor((1,), output_from_past.shape[-1]).item() |
|
output_from_no_past_slice = output_from_no_past[:, -3:, random_slice_idx].detach() |
|
output_from_past_slice = output_from_past[:, :, random_slice_idx].detach() |
|
|
|
|
|
self.parent.assertTrue(torch.allclose(output_from_past_slice, output_from_no_past_slice, atol=1e-3)) |
|
|
|
def create_and_check_lm_head_model(self, config, input_ids, input_mask, head_mask, token_type_ids, *args): |
|
model = CodeGenForCausalLM(config) |
|
model.to(torch_device) |
|
model.eval() |
|
|
|
result = model(input_ids, token_type_ids=token_type_ids, labels=input_ids) |
|
self.parent.assertEqual(result.loss.shape, ()) |
|
self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.vocab_size)) |
|
|
|
def create_and_check_forward_and_backwards( |
|
self, config, input_ids, input_mask, head_mask, token_type_ids, *args, gradient_checkpointing=False |
|
): |
|
model = CodeGenForCausalLM(config) |
|
if gradient_checkpointing: |
|
model.gradient_checkpointing_enable() |
|
model.to(torch_device) |
|
|
|
result = model(input_ids, token_type_ids=token_type_ids, labels=input_ids) |
|
self.parent.assertEqual(result.loss.shape, ()) |
|
self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.vocab_size)) |
|
result.loss.backward() |
|
|
|
def prepare_config_and_inputs_for_common(self): |
|
config_and_inputs = self.prepare_config_and_inputs() |
|
|
|
( |
|
config, |
|
input_ids, |
|
input_mask, |
|
head_mask, |
|
token_type_ids, |
|
mc_token_ids, |
|
sequence_labels, |
|
token_labels, |
|
choice_labels, |
|
) = config_and_inputs |
|
|
|
inputs_dict = {"input_ids": input_ids, "token_type_ids": token_type_ids, "head_mask": head_mask} |
|
|
|
return config, inputs_dict |
|
|
|
|
|
@require_torch |
|
class CodeGenModelTest(ModelTesterMixin, GenerationTesterMixin, PipelineTesterMixin, unittest.TestCase): |
|
all_model_classes = (CodeGenModel, CodeGenForCausalLM) if is_torch_available() else () |
|
all_generative_model_classes = (CodeGenForCausalLM,) if is_torch_available() else () |
|
pipeline_model_mapping = ( |
|
{"feature-extraction": CodeGenModel, "text-generation": CodeGenForCausalLM} if is_torch_available() else {} |
|
) |
|
fx_compatible = False |
|
test_pruning = False |
|
test_missing_keys = False |
|
test_model_parallel = False |
|
test_head_masking = False |
|
|
|
|
|
def _prepare_for_class(self, inputs_dict, model_class, return_labels=False): |
|
inputs_dict = super()._prepare_for_class(inputs_dict, model_class, return_labels=return_labels) |
|
return inputs_dict |
|
|
|
def setUp(self): |
|
self.model_tester = CodeGenModelTester(self) |
|
self.config_tester = ConfigTester(self, config_class=CodeGenConfig, n_embd=37) |
|
|
|
def test_config(self): |
|
self.config_tester.run_common_tests() |
|
|
|
def test_codegen_model(self): |
|
config_and_inputs = self.model_tester.prepare_config_and_inputs() |
|
self.model_tester.create_and_check_codegen_model(*config_and_inputs) |
|
|
|
def test_codegen_model_past(self): |
|
config_and_inputs = self.model_tester.prepare_config_and_inputs() |
|
self.model_tester.create_and_check_codegen_model_past(*config_and_inputs) |
|
|
|
def test_codegen_model_att_mask_past(self): |
|
config_and_inputs = self.model_tester.prepare_config_and_inputs() |
|
self.model_tester.create_and_check_codegen_model_attention_mask_past(*config_and_inputs) |
|
|
|
def test_codegen_model_past_large_inputs(self): |
|
config_and_inputs = self.model_tester.prepare_config_and_inputs() |
|
self.model_tester.create_and_check_codegen_model_past_large_inputs(*config_and_inputs) |
|
|
|
def test_codegen_lm_head_model(self): |
|
config_and_inputs = self.model_tester.prepare_config_and_inputs() |
|
self.model_tester.create_and_check_lm_head_model(*config_and_inputs) |
|
|
|
def test_codegen_gradient_checkpointing(self): |
|
config_and_inputs = self.model_tester.prepare_config_and_inputs() |
|
self.model_tester.create_and_check_forward_and_backwards(*config_and_inputs, gradient_checkpointing=True) |
|
|
|
@slow |
|
def test_batch_generation(self): |
|
tokenizer = AutoTokenizer.from_pretrained("Salesforce/codegen-350M-mono") |
|
model = CodeGenForCausalLM.from_pretrained("Salesforce/codegen-350M-mono") |
|
model.to(torch_device) |
|
|
|
tokenizer.padding_side = "left" |
|
|
|
|
|
tokenizer.pad_token = tokenizer.eos_token |
|
model.config.pad_token_id = model.config.eos_token_id |
|
|
|
|
|
sentences = ["def hellow_world():", "def greet(name):"] |
|
|
|
inputs = tokenizer(sentences, return_tensors="pt", padding=True) |
|
input_ids = inputs["input_ids"].to(torch_device) |
|
token_type_ids = torch.cat( |
|
[ |
|
input_ids.new_full((input_ids.shape[0], input_ids.shape[1] - 1), 0), |
|
input_ids.new_full((input_ids.shape[0], 1), 500), |
|
], |
|
dim=-1, |
|
) |
|
|
|
outputs = model.generate( |
|
input_ids=input_ids, |
|
attention_mask=inputs["attention_mask"].to(torch_device), |
|
) |
|
|
|
outputs_tt = model.generate( |
|
input_ids=input_ids, |
|
attention_mask=inputs["attention_mask"].to(torch_device), |
|
token_type_ids=token_type_ids, |
|
) |
|
|
|
inputs_non_padded = tokenizer(sentences[0], return_tensors="pt").input_ids.to(torch_device) |
|
output_non_padded = model.generate(input_ids=inputs_non_padded) |
|
|
|
num_paddings = inputs_non_padded.shape[-1] - inputs["attention_mask"][-1].long().sum().cpu().item() |
|
inputs_padded = tokenizer(sentences[1], return_tensors="pt").input_ids.to(torch_device) |
|
output_padded = model.generate(input_ids=inputs_padded, max_length=model.config.max_length - num_paddings) |
|
|
|
batch_out_sentence = tokenizer.batch_decode(outputs, skip_special_tokens=True) |
|
batch_out_sentence_tt = tokenizer.batch_decode(outputs_tt, skip_special_tokens=True) |
|
non_padded_sentence = tokenizer.decode(output_non_padded[0], skip_special_tokens=True) |
|
padded_sentence = tokenizer.decode(output_padded[0], skip_special_tokens=True) |
|
|
|
expected_output_sentence = [ |
|
'def hellow_world():\n print("Hello World")\n\nhellow_world()', |
|
'def greet(name):\n print(f"Hello {name}")\n\ng', |
|
] |
|
self.assertListEqual(expected_output_sentence, batch_out_sentence) |
|
self.assertTrue(batch_out_sentence_tt != batch_out_sentence) |
|
self.assertListEqual(expected_output_sentence, [non_padded_sentence, padded_sentence]) |
|
|
|
@slow |
|
def test_model_from_pretrained(self): |
|
for model_name in CODEGEN_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: |
|
model = CodeGenModel.from_pretrained(model_name) |
|
self.assertIsNotNone(model) |
|
|
|
|
|
@require_torch |
|
class CodeGenModelLanguageGenerationTest(unittest.TestCase): |
|
@slow |
|
def test_lm_generate_codegen(self): |
|
tokenizer = AutoTokenizer.from_pretrained("Salesforce/codegen-350M-mono") |
|
for checkpointing in [True, False]: |
|
model = CodeGenForCausalLM.from_pretrained("Salesforce/codegen-350M-mono") |
|
|
|
if checkpointing: |
|
model.gradient_checkpointing_enable() |
|
else: |
|
model.gradient_checkpointing_disable() |
|
model.to(torch_device) |
|
|
|
inputs = tokenizer("def hello_world():", return_tensors="pt").to(torch_device) |
|
expected_output = 'def hello_world():\n print("Hello World")\n\nhello_world()\n\n' |
|
|
|
output_ids = model.generate(**inputs, do_sample=False) |
|
output_str = tokenizer.batch_decode(output_ids)[0] |
|
|
|
self.assertEqual(output_str, expected_output) |
|
|
|
@slow |
|
def test_codegen_sample(self): |
|
tokenizer = AutoTokenizer.from_pretrained("Salesforce/codegen-350M-mono") |
|
model = CodeGenForCausalLM.from_pretrained("Salesforce/codegen-350M-mono") |
|
model.to(torch_device) |
|
|
|
torch.manual_seed(0) |
|
if torch_device == "cuda": |
|
torch.cuda.manual_seed(0) |
|
|
|
tokenized = tokenizer("def hello_world():", return_tensors="pt", return_token_type_ids=True) |
|
input_ids = tokenized.input_ids.to(torch_device) |
|
output_ids = model.generate(input_ids, do_sample=True) |
|
output_str = tokenizer.decode(output_ids[0], skip_special_tokens=True) |
|
|
|
token_type_ids = tokenized.token_type_ids.to(torch_device) |
|
output_seq = model.generate(input_ids=input_ids, do_sample=True, num_return_sequences=5) |
|
output_seq_tt = model.generate( |
|
input_ids=input_ids, token_type_ids=token_type_ids, do_sample=True, num_return_sequences=5 |
|
) |
|
output_seq_strs = tokenizer.batch_decode(output_seq, skip_special_tokens=True) |
|
output_seq_tt_strs = tokenizer.batch_decode(output_seq_tt, skip_special_tokens=True) |
|
|
|
if torch_device == "cuda": |
|
EXPECTED_OUTPUT_STR = 'def hello_world():\n print("Hello World")\n return True\n\nresult =' |
|
else: |
|
EXPECTED_OUTPUT_STR = "def hello_world():\r\n print('Hello, World.')\r\n\r\n\r" |
|
|
|
self.assertEqual(output_str, EXPECTED_OUTPUT_STR) |
|
self.assertTrue( |
|
all([output_seq_strs[idx] != output_seq_tt_strs[idx] for idx in range(len(output_seq_tt_strs))]) |
|
) |
|
|
|
@slow |
|
def test_codegen_sample_max_time(self): |
|
tokenizer = AutoTokenizer.from_pretrained("Salesforce/codegen-350M-mono") |
|
model = CodeGenForCausalLM.from_pretrained("Salesforce/codegen-350M-mono") |
|
model.to(torch_device) |
|
|
|
torch.manual_seed(0) |
|
tokenized = tokenizer("Today is a nice day and", return_tensors="pt", return_token_type_ids=True) |
|
input_ids = tokenized.input_ids.to(torch_device) |
|
|
|
MAX_TIME = 0.05 |
|
|
|
start = datetime.datetime.now() |
|
model.generate(input_ids, do_sample=True, max_time=MAX_TIME, max_length=256) |
|
duration = datetime.datetime.now() - start |
|
self.assertGreater(duration, datetime.timedelta(seconds=MAX_TIME)) |
|
self.assertLess(duration, datetime.timedelta(seconds=2 * MAX_TIME)) |
|
|
|
start = datetime.datetime.now() |
|
model.generate(input_ids, do_sample=False, max_time=MAX_TIME, max_length=256) |
|
duration = datetime.datetime.now() - start |
|
self.assertGreater(duration, datetime.timedelta(seconds=MAX_TIME)) |
|
self.assertLess(duration, datetime.timedelta(seconds=2 * MAX_TIME)) |
|
|
|
start = datetime.datetime.now() |
|
model.generate(input_ids, do_sample=False, num_beams=2, max_time=MAX_TIME, max_length=256) |
|
duration = datetime.datetime.now() - start |
|
self.assertGreater(duration, datetime.timedelta(seconds=MAX_TIME)) |
|
self.assertLess(duration, datetime.timedelta(seconds=2 * MAX_TIME)) |
|
|
|
start = datetime.datetime.now() |
|
model.generate(input_ids, do_sample=True, num_beams=2, max_time=MAX_TIME, max_length=256) |
|
duration = datetime.datetime.now() - start |
|
self.assertGreater(duration, datetime.timedelta(seconds=MAX_TIME)) |
|
self.assertLess(duration, datetime.timedelta(seconds=2 * MAX_TIME)) |
|
|
|
start = datetime.datetime.now() |
|
model.generate(input_ids, do_sample=False, max_time=None, max_length=256) |
|
duration = datetime.datetime.now() - start |
|
self.assertGreater(duration, datetime.timedelta(seconds=2 * MAX_TIME)) |
|
|