|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
""" Testing suite for the PyTorch BioGPT model. """ |
|
|
|
import math |
|
import unittest |
|
|
|
from transformers import BioGptConfig, is_torch_available |
|
from transformers.testing_utils import require_torch, slow, torch_device |
|
|
|
from ...generation.test_utils import GenerationTesterMixin |
|
from ...test_configuration_common import ConfigTester |
|
from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask |
|
from ...test_pipeline_mixin import PipelineTesterMixin |
|
|
|
|
|
if is_torch_available(): |
|
import torch |
|
|
|
from transformers import BioGptForCausalLM, BioGptModel, BioGptTokenizer |
|
from transformers.models.biogpt.modeling_biogpt import BIOGPT_PRETRAINED_MODEL_ARCHIVE_LIST |
|
|
|
|
|
class BioGptModelTester: |
|
def __init__( |
|
self, |
|
parent, |
|
batch_size=13, |
|
seq_length=7, |
|
is_training=True, |
|
use_input_mask=True, |
|
use_token_type_ids=False, |
|
use_labels=True, |
|
vocab_size=99, |
|
hidden_size=32, |
|
num_hidden_layers=5, |
|
num_attention_heads=4, |
|
intermediate_size=37, |
|
hidden_act="gelu", |
|
hidden_dropout_prob=0.1, |
|
attention_probs_dropout_prob=0.1, |
|
max_position_embeddings=512, |
|
type_vocab_size=16, |
|
type_sequence_label_size=2, |
|
initializer_range=0.02, |
|
num_labels=3, |
|
num_choices=4, |
|
scope=None, |
|
): |
|
self.parent = parent |
|
self.batch_size = batch_size |
|
self.seq_length = seq_length |
|
self.is_training = is_training |
|
self.use_input_mask = use_input_mask |
|
self.use_token_type_ids = use_token_type_ids |
|
self.use_labels = use_labels |
|
self.vocab_size = vocab_size |
|
self.hidden_size = hidden_size |
|
self.num_hidden_layers = num_hidden_layers |
|
self.num_attention_heads = num_attention_heads |
|
self.intermediate_size = intermediate_size |
|
self.hidden_act = hidden_act |
|
self.hidden_dropout_prob = hidden_dropout_prob |
|
self.attention_probs_dropout_prob = attention_probs_dropout_prob |
|
self.max_position_embeddings = max_position_embeddings |
|
self.type_vocab_size = type_vocab_size |
|
self.type_sequence_label_size = type_sequence_label_size |
|
self.initializer_range = initializer_range |
|
self.num_labels = num_labels |
|
self.num_choices = num_choices |
|
self.scope = scope |
|
|
|
def prepare_config_and_inputs(self): |
|
input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size) |
|
|
|
input_mask = None |
|
if self.use_input_mask: |
|
input_mask = random_attention_mask([self.batch_size, self.seq_length]) |
|
|
|
token_type_ids = None |
|
if self.use_token_type_ids: |
|
token_type_ids = ids_tensor([self.batch_size, self.seq_length], self.type_vocab_size) |
|
|
|
sequence_labels = None |
|
token_labels = None |
|
choice_labels = None |
|
if self.use_labels: |
|
sequence_labels = ids_tensor([self.batch_size], self.type_sequence_label_size) |
|
token_labels = ids_tensor([self.batch_size, self.seq_length], self.num_labels) |
|
choice_labels = ids_tensor([self.batch_size], self.num_choices) |
|
|
|
config = self.get_config() |
|
|
|
return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels |
|
|
|
def get_config(self): |
|
return BioGptConfig( |
|
vocab_size=self.vocab_size, |
|
hidden_size=self.hidden_size, |
|
num_hidden_layers=self.num_hidden_layers, |
|
num_attention_heads=self.num_attention_heads, |
|
intermediate_size=self.intermediate_size, |
|
hidden_act=self.hidden_act, |
|
hidden_dropout_prob=self.hidden_dropout_prob, |
|
attention_probs_dropout_prob=self.attention_probs_dropout_prob, |
|
max_position_embeddings=self.max_position_embeddings, |
|
type_vocab_size=self.type_vocab_size, |
|
is_decoder=False, |
|
initializer_range=self.initializer_range, |
|
) |
|
|
|
def create_and_check_model( |
|
self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels |
|
): |
|
model = BioGptModel(config=config) |
|
model.to(torch_device) |
|
model.eval() |
|
result = model(input_ids, attention_mask=input_mask) |
|
result = model(input_ids) |
|
self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size)) |
|
|
|
def create_and_check_for_causal_lm( |
|
self, |
|
config, |
|
input_ids, |
|
token_type_ids, |
|
input_mask, |
|
sequence_labels, |
|
token_labels, |
|
choice_labels, |
|
encoder_hidden_states, |
|
encoder_attention_mask, |
|
): |
|
model = BioGptForCausalLM(config=config) |
|
model.to(torch_device) |
|
model.eval() |
|
result = model(input_ids, attention_mask=input_mask, token_type_ids=token_type_ids, labels=token_labels) |
|
self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.vocab_size)) |
|
|
|
def create_and_check_biogpt_model_attention_mask_past( |
|
self, config, input_ids, input_mask, head_mask, token_type_ids, *args |
|
): |
|
model = BioGptModel(config=config) |
|
model.to(torch_device) |
|
model.eval() |
|
|
|
|
|
attn_mask = torch.ones(input_ids.shape, dtype=torch.long, device=torch_device) |
|
half_seq_length = self.seq_length // 2 |
|
attn_mask[:, half_seq_length:] = 0 |
|
|
|
|
|
output, past = model(input_ids, attention_mask=attn_mask).to_tuple() |
|
|
|
|
|
next_tokens = ids_tensor((self.batch_size, 1), config.vocab_size) |
|
|
|
|
|
random_seq_idx_to_change = ids_tensor((1,), half_seq_length).item() + 1 |
|
random_other_next_tokens = ids_tensor((self.batch_size, 1), config.vocab_size).squeeze(-1) |
|
input_ids[:, -random_seq_idx_to_change] = random_other_next_tokens |
|
|
|
|
|
next_input_ids = torch.cat([input_ids, next_tokens], dim=-1) |
|
attn_mask = torch.cat( |
|
[attn_mask, torch.ones((attn_mask.shape[0], 1), dtype=torch.long, device=torch_device)], |
|
dim=1, |
|
) |
|
|
|
|
|
output_from_no_past = model(next_input_ids, attention_mask=attn_mask)["last_hidden_state"] |
|
output_from_past = model(next_tokens, past_key_values=past, attention_mask=attn_mask)["last_hidden_state"] |
|
|
|
|
|
random_slice_idx = ids_tensor((1,), output_from_past.shape[-1]).item() |
|
output_from_no_past_slice = output_from_no_past[:, -1, random_slice_idx].detach() |
|
output_from_past_slice = output_from_past[:, 0, random_slice_idx].detach() |
|
|
|
|
|
self.parent.assertTrue(torch.allclose(output_from_past_slice, output_from_no_past_slice, atol=1e-3)) |
|
|
|
def create_and_check_biogpt_model_past_large_inputs( |
|
self, config, input_ids, input_mask, head_mask, token_type_ids, *args |
|
): |
|
model = BioGptModel(config=config).to(torch_device).eval() |
|
|
|
attention_mask = torch.ones(input_ids.shape, dtype=torch.long, device=torch_device) |
|
|
|
|
|
outputs = model(input_ids, attention_mask=attention_mask, use_cache=True) |
|
|
|
output, past_key_values = outputs.to_tuple() |
|
|
|
|
|
next_tokens = ids_tensor((self.batch_size, 3), config.vocab_size) |
|
next_attn_mask = ids_tensor((self.batch_size, 3), 2) |
|
|
|
|
|
next_input_ids = torch.cat([input_ids, next_tokens], dim=-1) |
|
next_attention_mask = torch.cat([attention_mask, next_attn_mask], dim=-1) |
|
|
|
output_from_no_past = model(next_input_ids, attention_mask=next_attention_mask)["last_hidden_state"] |
|
output_from_past = model(next_tokens, attention_mask=next_attention_mask, past_key_values=past_key_values)[ |
|
"last_hidden_state" |
|
] |
|
|
|
|
|
random_slice_idx = ids_tensor((1,), output_from_past.shape[-1]).item() |
|
output_from_no_past_slice = output_from_no_past[:, -3:, random_slice_idx].detach() |
|
output_from_past_slice = output_from_past[:, :, random_slice_idx].detach() |
|
|
|
self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1]) |
|
|
|
|
|
self.parent.assertTrue(torch.allclose(output_from_past_slice, output_from_no_past_slice, atol=1e-3)) |
|
|
|
def create_and_check_forward_and_backwards( |
|
self, config, input_ids, input_mask, head_mask, token_type_ids, *args, gradient_checkpointing=False |
|
): |
|
model = BioGptForCausalLM(config) |
|
model.to(torch_device) |
|
if gradient_checkpointing: |
|
model.gradient_checkpointing_enable() |
|
|
|
result = model(input_ids, labels=input_ids) |
|
self.parent.assertEqual(result.loss.shape, ()) |
|
self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.vocab_size)) |
|
result.loss.backward() |
|
|
|
def create_and_check_biogpt_weight_initialization(self, config, *args): |
|
model = BioGptModel(config) |
|
model_std = model.config.initializer_range / math.sqrt(2 * model.config.num_hidden_layers) |
|
for key in model.state_dict().keys(): |
|
if "c_proj" in key and "weight" in key: |
|
self.parent.assertLessEqual(abs(torch.std(model.state_dict()[key]) - model_std), 0.001) |
|
self.parent.assertLessEqual(abs(torch.mean(model.state_dict()[key]) - 0.0), 0.01) |
|
|
|
def prepare_config_and_inputs_for_common(self): |
|
config_and_inputs = self.prepare_config_and_inputs() |
|
( |
|
config, |
|
input_ids, |
|
token_type_ids, |
|
input_mask, |
|
sequence_labels, |
|
token_labels, |
|
choice_labels, |
|
) = config_and_inputs |
|
inputs_dict = {"input_ids": input_ids, "attention_mask": input_mask} |
|
return config, inputs_dict |
|
|
|
|
|
@require_torch |
|
class BioGptModelTest(ModelTesterMixin, GenerationTesterMixin, PipelineTesterMixin, unittest.TestCase): |
|
all_model_classes = (BioGptModel, BioGptForCausalLM) if is_torch_available() else () |
|
all_generative_model_classes = (BioGptForCausalLM,) if is_torch_available() else () |
|
pipeline_model_mapping = ( |
|
{"feature-extraction": BioGptModel, "text-generation": BioGptForCausalLM} if is_torch_available() else {} |
|
) |
|
test_pruning = False |
|
|
|
def setUp(self): |
|
self.model_tester = BioGptModelTester(self) |
|
self.config_tester = ConfigTester(self, config_class=BioGptConfig, hidden_size=37) |
|
|
|
def test_config(self): |
|
self.config_tester.run_common_tests() |
|
|
|
def test_model(self): |
|
config_and_inputs = self.model_tester.prepare_config_and_inputs() |
|
self.model_tester.create_and_check_model(*config_and_inputs) |
|
|
|
def test_model_various_embeddings(self): |
|
config_and_inputs = self.model_tester.prepare_config_and_inputs() |
|
for type in ["absolute", "relative_key", "relative_key_query"]: |
|
config_and_inputs[0].position_embedding_type = type |
|
self.model_tester.create_and_check_model(*config_and_inputs) |
|
|
|
def test_biogpt_model_att_mask_past(self): |
|
config_and_inputs = self.model_tester.prepare_config_and_inputs() |
|
self.model_tester.create_and_check_biogpt_model_attention_mask_past(*config_and_inputs) |
|
|
|
def test_biogpt_gradient_checkpointing(self): |
|
config_and_inputs = self.model_tester.prepare_config_and_inputs() |
|
self.model_tester.create_and_check_forward_and_backwards(*config_and_inputs, gradient_checkpointing=True) |
|
|
|
def test_biogpt_model_past_with_large_inputs(self): |
|
config_and_inputs = self.model_tester.prepare_config_and_inputs() |
|
self.model_tester.create_and_check_biogpt_model_past_large_inputs(*config_and_inputs) |
|
|
|
def test_biogpt_weight_initialization(self): |
|
config_and_inputs = self.model_tester.prepare_config_and_inputs() |
|
self.model_tester.create_and_check_biogpt_weight_initialization(*config_and_inputs) |
|
|
|
@slow |
|
def test_batch_generation(self): |
|
model = BioGptForCausalLM.from_pretrained("microsoft/biogpt") |
|
model.to(torch_device) |
|
tokenizer = BioGptTokenizer.from_pretrained("microsoft/biogpt") |
|
|
|
tokenizer.padding_side = "left" |
|
|
|
|
|
tokenizer.pad_token = tokenizer.eos_token |
|
model.config.pad_token_id = model.config.eos_token_id |
|
|
|
|
|
sentences = [ |
|
"Hello, my dog is a little", |
|
"Today, I", |
|
] |
|
|
|
inputs = tokenizer(sentences, return_tensors="pt", padding=True) |
|
input_ids = inputs["input_ids"].to(torch_device) |
|
|
|
outputs = model.generate( |
|
input_ids=input_ids, |
|
attention_mask=inputs["attention_mask"].to(torch_device), |
|
) |
|
|
|
inputs_non_padded = tokenizer(sentences[0], return_tensors="pt").input_ids.to(torch_device) |
|
output_non_padded = model.generate(input_ids=inputs_non_padded) |
|
|
|
num_paddings = inputs_non_padded.shape[-1] - inputs["attention_mask"][-1].long().sum().cpu().item() |
|
inputs_padded = tokenizer(sentences[1], return_tensors="pt").input_ids.to(torch_device) |
|
output_padded = model.generate(input_ids=inputs_padded, max_length=model.config.max_length - num_paddings) |
|
|
|
batch_out_sentence = tokenizer.batch_decode(outputs, skip_special_tokens=True) |
|
non_padded_sentence = tokenizer.decode(output_non_padded[0], skip_special_tokens=True) |
|
padded_sentence = tokenizer.decode(output_padded[0], skip_special_tokens=True) |
|
|
|
expected_output_sentence = [ |
|
"Hello, my dog is a little bit bigger than a little bit.", |
|
"Today, I have a good idea of how to use the information", |
|
] |
|
self.assertListEqual(expected_output_sentence, batch_out_sentence) |
|
self.assertListEqual(expected_output_sentence, [non_padded_sentence, padded_sentence]) |
|
|
|
@slow |
|
def test_model_from_pretrained(self): |
|
for model_name in BIOGPT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: |
|
model = BioGptModel.from_pretrained(model_name) |
|
self.assertIsNotNone(model) |
|
|
|
|
|
@require_torch |
|
class BioGptModelIntegrationTest(unittest.TestCase): |
|
@slow |
|
def test_inference_lm_head_model(self): |
|
model = BioGptForCausalLM.from_pretrained("microsoft/biogpt") |
|
input_ids = torch.tensor([[2, 4805, 9, 656, 21]]) |
|
output = model(input_ids)[0] |
|
|
|
vocab_size = 42384 |
|
|
|
expected_shape = torch.Size((1, 5, vocab_size)) |
|
self.assertEqual(output.shape, expected_shape) |
|
|
|
expected_slice = torch.tensor( |
|
[[[-9.5236, -9.8918, 10.4557], [-11.0469, -9.6423, 8.1022], [-8.8664, -7.8826, 5.5325]]] |
|
) |
|
|
|
self.assertTrue(torch.allclose(output[:, :3, :3], expected_slice, atol=1e-4)) |
|
|
|
@slow |
|
def test_biogpt_generation(self): |
|
tokenizer = BioGptTokenizer.from_pretrained("microsoft/biogpt") |
|
model = BioGptForCausalLM.from_pretrained("microsoft/biogpt") |
|
model.to(torch_device) |
|
|
|
torch.manual_seed(0) |
|
tokenized = tokenizer("COVID-19 is", return_tensors="pt").to(torch_device) |
|
output_ids = model.generate( |
|
**tokenized, |
|
min_length=100, |
|
max_length=1024, |
|
num_beams=5, |
|
early_stopping=True, |
|
) |
|
output_str = tokenizer.decode(output_ids[0], skip_special_tokens=True) |
|
|
|
EXPECTED_OUTPUT_STR = ( |
|
"COVID-19 is a global pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the" |
|
" causative agent of coronavirus disease 2019 (COVID-19), which has spread to more than 200 countries and" |
|
" territories, including the United States (US), Canada, Australia, New Zealand, the United Kingdom (UK)," |
|
" and the United States of America (USA), as of March 11, 2020, with more than 800,000 confirmed cases and" |
|
" more than 800,000 deaths." |
|
) |
|
self.assertEqual(output_str, EXPECTED_OUTPUT_STR) |
|
|