Spaces:
sonalkum
/
Running on Zero

GAMA-IT / app.py
sonalkum's picture
Update app.py
fab8b65 verified
raw
history blame
6.05 kB
import os
import gradio as gr
import torch
import torchaudio
import spaces
from peft.src.peft import (
LoraConfig,
get_peft_model,
get_peft_model_state_dict,
prepare_model_for_int8_training,
set_peft_model_state_dict,
)
from hf.transformers.src.transformers.generation import GenerationConfig
from hf.transformers.src.transformers.models.llama import LlamaForCausalLM, LlamaTokenizer, LlamaConfig
from utils.prompter import Prompter
import datetime
import time,json
device = "cuda"
base_model = "Llama-2-7b-chat-hf-qformer/"
prompter = Prompter('alpaca_short')
tokenizer = LlamaTokenizer.from_pretrained(base_model)
model = LlamaForCausalLM.from_pretrained(base_model, device_map="auto", torch_dtype=torch.float32)
config = LoraConfig(
r=8,
lora_alpha=16,
target_modules=["q_proj", "v_proj"],
lora_dropout=0.0,
bias="none",
task_type="CAUSAL_LM",
)
model = get_peft_model(model, config)
temp, top_p, top_k = 0.1, 0.95, 500
# change it to your model path
### Stage 4 ckpt
eval_mdl_path = './stage5_ckpt/pytorch_model.bin'
state_dict = torch.load(eval_mdl_path, map_location='cpu')
msg = model.load_state_dict(state_dict, strict=False)
model.is_parallelizable = True
model.model_parallel = True
# unwind broken decapoda-research config
model.config.pad_token_id = tokenizer.pad_token_id = 0 # unk
model.config.bos_token_id = 1
model.config.eos_token_id = 2
model.eval()
eval_log = []
cur_time = datetime.datetime.now().strftime("%Y-%m-%d-%H-%M-%S")
log_save_path = './inference_log/'
if os.path.exists(log_save_path) == False:
os.mkdir(log_save_path)
log_save_path = log_save_path + cur_time + '.json'
SAMPLE_RATE = 16000
AUDIO_LEN = 1.0
def load_audio(filename):
waveform, sr = torchaudio.load(filename)
audio_info = 'Original input audio length {:.2f} seconds, number of channels: {:d}, sampling rate: {:d}.'.format(waveform.shape[1]/sr, waveform.shape[0], sr)
if sr != 16000:
waveform = torchaudio.functional.resample(waveform=waveform, orig_freq=sr, new_freq=16000)
sr = 16000
waveform = waveform - waveform.mean()
fbank = torchaudio.compliance.kaldi.fbank(waveform, htk_compat=True, sample_frequency=sr,
use_energy=False, window_type='hanning',
num_mel_bins=128, dither=0.0, frame_shift=10)
target_length = 1024
n_frames = fbank.shape[0]
p = target_length - n_frames
if p > 0:
m = torch.nn.ZeroPad2d((0, 0, 0, p))
fbank = m(fbank)
elif p < 0:
fbank = fbank[0:target_length, :]
# normalize the fbank
fbank = (fbank + 5.081) / 4.4849
return fbank, audio_info
@spaces.GPU
def predict(audio_path, question):
model.to(device)
print('audio path, ', audio_path)
begin_time = time.time()
instruction = question
prompt = prompter.generate_prompt(instruction, None)
print('Input prompt: ', prompt)
inputs = tokenizer(prompt, return_tensors="pt")
input_ids = inputs["input_ids"].to(device)
if audio_path != 'empty':
cur_audio_input, audio_info = load_audio(audio_path)
cur_audio_input = cur_audio_input.unsqueeze(0)
if torch.cuda.is_available() == False:
pass
else:
# cur_audio_input = cur_audio_input.half().to(device)
cur_audio_input = cur_audio_input.to(device)
else:
cur_audio_input = None
audio_info = 'Audio is not provided, answer pure language question.'
generation_config = GenerationConfig(
do_sample=True,
temperature=0.1,
top_p=0.95,
max_new_tokens=400,
bos_token_id=model.config.bos_token_id,
eos_token_id=model.config.eos_token_id,
pad_token_id=model.config.pad_token_id,
num_return_sequences=1
)
# Without streaming
with torch.no_grad():
generation_output = model.generate(
input_ids=input_ids.to(device),
audio_input=cur_audio_input,
generation_config=generation_config,
return_dict_in_generate=True,
output_scores=True,
max_new_tokens=400,
)
s = generation_output.sequences[0]
output = tokenizer.decode(s)[len(prompt)+6:-4] # trim <s> and </s>
end_time = time.time()
print(output)
cur_res = {'audio_id': audio_path, 'input': instruction, 'output': output}
eval_log.append(cur_res)
with open(log_save_path, 'w') as outfile:
json.dump(eval_log, outfile, indent=1)
print('eclipse time: ', end_time - begin_time, ' seconds.')
return audio_info, output
link = "https://github.com/Sreyan88/GAMA"
text = "[Github]"
paper_link = "https://sreyan88.github.io/gamaaudio/"
paper_text = "https://arxiv.org/pdf/2406.11768"
demo = gr.Interface(fn=predict,
inputs=[gr.Audio(type="filepath"), gr.Textbox(value='Describe the audio in detail', label='Edit the textbox to ask your own questions!')],
outputs=[gr.Textbox(label="Audio Meta Information"), gr.Textbox(label="GAMA Output")],
cache_examples=True,
title="Quick Demo of GAMA-IT",
description="GAMA-IT is an instruction-tuned version of GAMA, a novel Large Audio-Language Model that is capable of complex reasoning. The model can understand any given audio (non-speech) and answer any open-ended question about it, including ones that require complex reasoning." + f"<a href='{paper_link}'>{paper_text}</a> " + f"<a href='{link}'>{text}</a> <br>" +
"GAMA-IT is authored by members of the GAMMA Lab at the University of Maryland, College Park and Adobe, USA. <br>" +
"**GAMA-IT is not an ASR model and has limited ability to recognize the speech content. It primarily focuses on perception and understanding of non-speech sounds.**<br>" +
"Input an audio and ask quesions! Audio will be converted to 16kHz and padded or trim to 10 seconds.")
demo.launch()