| 
							 | 
						 | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						""" Fine-tuning the library models for named entity recognition on CoNLL-2003. """ | 
					
					
						
						| 
							 | 
						import logging | 
					
					
						
						| 
							 | 
						import os | 
					
					
						
						| 
							 | 
						import sys | 
					
					
						
						| 
							 | 
						from dataclasses import dataclass, field | 
					
					
						
						| 
							 | 
						from importlib import import_module | 
					
					
						
						| 
							 | 
						from typing import Dict, List, Optional, Tuple | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						import numpy as np | 
					
					
						
						| 
							 | 
						from seqeval.metrics import accuracy_score, f1_score, precision_score, recall_score | 
					
					
						
						| 
							 | 
						from torch import nn | 
					
					
						
						| 
							 | 
						from utils_ner import Split, TokenClassificationDataset, TokenClassificationTask | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						import transformers | 
					
					
						
						| 
							 | 
						from transformers import ( | 
					
					
						
						| 
							 | 
						    AutoConfig, | 
					
					
						
						| 
							 | 
						    AutoModelForTokenClassification, | 
					
					
						
						| 
							 | 
						    AutoTokenizer, | 
					
					
						
						| 
							 | 
						    DataCollatorWithPadding, | 
					
					
						
						| 
							 | 
						    EvalPrediction, | 
					
					
						
						| 
							 | 
						    HfArgumentParser, | 
					
					
						
						| 
							 | 
						    Trainer, | 
					
					
						
						| 
							 | 
						    TrainingArguments, | 
					
					
						
						| 
							 | 
						    set_seed, | 
					
					
						
						| 
							 | 
						) | 
					
					
						
						| 
							 | 
						from transformers.trainer_utils import is_main_process | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						logger = logging.getLogger(__name__) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						@dataclass | 
					
					
						
						| 
							 | 
						class ModelArguments: | 
					
					
						
						| 
							 | 
						    """ | 
					
					
						
						| 
							 | 
						    Arguments pertaining to which model/config/tokenizer we are going to fine-tune from. | 
					
					
						
						| 
							 | 
						    """ | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    model_name_or_path: str = field( | 
					
					
						
						| 
							 | 
						        metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"} | 
					
					
						
						| 
							 | 
						    ) | 
					
					
						
						| 
							 | 
						    config_name: Optional[str] = field( | 
					
					
						
						| 
							 | 
						        default=None, metadata={"help": "Pretrained config name or path if not the same as model_name"} | 
					
					
						
						| 
							 | 
						    ) | 
					
					
						
						| 
							 | 
						    task_type: Optional[str] = field( | 
					
					
						
						| 
							 | 
						        default="NER", metadata={"help": "Task type to fine tune in training (e.g. NER, POS, etc)"} | 
					
					
						
						| 
							 | 
						    ) | 
					
					
						
						| 
							 | 
						    tokenizer_name: Optional[str] = field( | 
					
					
						
						| 
							 | 
						        default=None, metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"} | 
					
					
						
						| 
							 | 
						    ) | 
					
					
						
						| 
							 | 
						    use_fast: bool = field(default=False, metadata={"help": "Set this flag to use fast tokenization."}) | 
					
					
						
						| 
							 | 
						     | 
					
					
						
						| 
							 | 
						     | 
					
					
						
						| 
							 | 
						    cache_dir: Optional[str] = field( | 
					
					
						
						| 
							 | 
						        default=None, | 
					
					
						
						| 
							 | 
						        metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co"}, | 
					
					
						
						| 
							 | 
						    ) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						@dataclass | 
					
					
						
						| 
							 | 
						class DataTrainingArguments: | 
					
					
						
						| 
							 | 
						    """ | 
					
					
						
						| 
							 | 
						    Arguments pertaining to what data we are going to input our model for training and eval. | 
					
					
						
						| 
							 | 
						    """ | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    data_dir: str = field( | 
					
					
						
						| 
							 | 
						        metadata={"help": "The input data dir. Should contain the .txt files for a CoNLL-2003-formatted task."} | 
					
					
						
						| 
							 | 
						    ) | 
					
					
						
						| 
							 | 
						    labels: Optional[str] = field( | 
					
					
						
						| 
							 | 
						        default=None, | 
					
					
						
						| 
							 | 
						        metadata={"help": "Path to a file containing all labels. If not specified, CoNLL-2003 labels are used."}, | 
					
					
						
						| 
							 | 
						    ) | 
					
					
						
						| 
							 | 
						    max_seq_length: int = field( | 
					
					
						
						| 
							 | 
						        default=128, | 
					
					
						
						| 
							 | 
						        metadata={ | 
					
					
						
						| 
							 | 
						            "help": ( | 
					
					
						
						| 
							 | 
						                "The maximum total input sequence length after tokenization. Sequences longer " | 
					
					
						
						| 
							 | 
						                "than this will be truncated, sequences shorter will be padded." | 
					
					
						
						| 
							 | 
						            ) | 
					
					
						
						| 
							 | 
						        }, | 
					
					
						
						| 
							 | 
						    ) | 
					
					
						
						| 
							 | 
						    overwrite_cache: bool = field( | 
					
					
						
						| 
							 | 
						        default=False, metadata={"help": "Overwrite the cached training and evaluation sets"} | 
					
					
						
						| 
							 | 
						    ) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						def main(): | 
					
					
						
						| 
							 | 
						     | 
					
					
						
						| 
							 | 
						     | 
					
					
						
						| 
							 | 
						     | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    parser = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments)) | 
					
					
						
						| 
							 | 
						    if len(sys.argv) == 2 and sys.argv[1].endswith(".json"): | 
					
					
						
						| 
							 | 
						         | 
					
					
						
						| 
							 | 
						         | 
					
					
						
						| 
							 | 
						        model_args, data_args, training_args = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1])) | 
					
					
						
						| 
							 | 
						    else: | 
					
					
						
						| 
							 | 
						        model_args, data_args, training_args = parser.parse_args_into_dataclasses() | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    if ( | 
					
					
						
						| 
							 | 
						        os.path.exists(training_args.output_dir) | 
					
					
						
						| 
							 | 
						        and os.listdir(training_args.output_dir) | 
					
					
						
						| 
							 | 
						        and training_args.do_train | 
					
					
						
						| 
							 | 
						        and not training_args.overwrite_output_dir | 
					
					
						
						| 
							 | 
						    ): | 
					
					
						
						| 
							 | 
						        raise ValueError( | 
					
					
						
						| 
							 | 
						            f"Output directory ({training_args.output_dir}) already exists and is not empty. Use" | 
					
					
						
						| 
							 | 
						            " --overwrite_output_dir to overcome." | 
					
					
						
						| 
							 | 
						        ) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    module = import_module("tasks") | 
					
					
						
						| 
							 | 
						    try: | 
					
					
						
						| 
							 | 
						        token_classification_task_clazz = getattr(module, model_args.task_type) | 
					
					
						
						| 
							 | 
						        token_classification_task: TokenClassificationTask = token_classification_task_clazz() | 
					
					
						
						| 
							 | 
						    except AttributeError: | 
					
					
						
						| 
							 | 
						        raise ValueError( | 
					
					
						
						| 
							 | 
						            f"Task {model_args.task_type} needs to be defined as a TokenClassificationTask subclass in {module}. " | 
					
					
						
						| 
							 | 
						            f"Available tasks classes are: {TokenClassificationTask.__subclasses__()}" | 
					
					
						
						| 
							 | 
						        ) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						     | 
					
					
						
						| 
							 | 
						    logging.basicConfig( | 
					
					
						
						| 
							 | 
						        format="%(asctime)s - %(levelname)s - %(name)s - %(message)s", | 
					
					
						
						| 
							 | 
						        datefmt="%m/%d/%Y %H:%M:%S", | 
					
					
						
						| 
							 | 
						        level=logging.INFO if training_args.local_rank in [-1, 0] else logging.WARN, | 
					
					
						
						| 
							 | 
						    ) | 
					
					
						
						| 
							 | 
						    logger.warning( | 
					
					
						
						| 
							 | 
						        "Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s", | 
					
					
						
						| 
							 | 
						        training_args.local_rank, | 
					
					
						
						| 
							 | 
						        training_args.device, | 
					
					
						
						| 
							 | 
						        training_args.n_gpu, | 
					
					
						
						| 
							 | 
						        bool(training_args.local_rank != -1), | 
					
					
						
						| 
							 | 
						        training_args.fp16, | 
					
					
						
						| 
							 | 
						    ) | 
					
					
						
						| 
							 | 
						     | 
					
					
						
						| 
							 | 
						    if is_main_process(training_args.local_rank): | 
					
					
						
						| 
							 | 
						        transformers.utils.logging.set_verbosity_info() | 
					
					
						
						| 
							 | 
						        transformers.utils.logging.enable_default_handler() | 
					
					
						
						| 
							 | 
						        transformers.utils.logging.enable_explicit_format() | 
					
					
						
						| 
							 | 
						    logger.info("Training/evaluation parameters %s", training_args) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						     | 
					
					
						
						| 
							 | 
						    set_seed(training_args.seed) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						     | 
					
					
						
						| 
							 | 
						    labels = token_classification_task.get_labels(data_args.labels) | 
					
					
						
						| 
							 | 
						    label_map: Dict[int, str] = dict(enumerate(labels)) | 
					
					
						
						| 
							 | 
						    num_labels = len(labels) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						     | 
					
					
						
						| 
							 | 
						     | 
					
					
						
						| 
							 | 
						     | 
					
					
						
						| 
							 | 
						     | 
					
					
						
						| 
							 | 
						     | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    config = AutoConfig.from_pretrained( | 
					
					
						
						| 
							 | 
						        model_args.config_name if model_args.config_name else model_args.model_name_or_path, | 
					
					
						
						| 
							 | 
						        num_labels=num_labels, | 
					
					
						
						| 
							 | 
						        id2label=label_map, | 
					
					
						
						| 
							 | 
						        label2id={label: i for i, label in enumerate(labels)}, | 
					
					
						
						| 
							 | 
						        cache_dir=model_args.cache_dir, | 
					
					
						
						| 
							 | 
						    ) | 
					
					
						
						| 
							 | 
						    tokenizer = AutoTokenizer.from_pretrained( | 
					
					
						
						| 
							 | 
						        model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path, | 
					
					
						
						| 
							 | 
						        cache_dir=model_args.cache_dir, | 
					
					
						
						| 
							 | 
						        use_fast=model_args.use_fast, | 
					
					
						
						| 
							 | 
						    ) | 
					
					
						
						| 
							 | 
						    model = AutoModelForTokenClassification.from_pretrained( | 
					
					
						
						| 
							 | 
						        model_args.model_name_or_path, | 
					
					
						
						| 
							 | 
						        from_tf=bool(".ckpt" in model_args.model_name_or_path), | 
					
					
						
						| 
							 | 
						        config=config, | 
					
					
						
						| 
							 | 
						        cache_dir=model_args.cache_dir, | 
					
					
						
						| 
							 | 
						    ) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						     | 
					
					
						
						| 
							 | 
						    train_dataset = ( | 
					
					
						
						| 
							 | 
						        TokenClassificationDataset( | 
					
					
						
						| 
							 | 
						            token_classification_task=token_classification_task, | 
					
					
						
						| 
							 | 
						            data_dir=data_args.data_dir, | 
					
					
						
						| 
							 | 
						            tokenizer=tokenizer, | 
					
					
						
						| 
							 | 
						            labels=labels, | 
					
					
						
						| 
							 | 
						            model_type=config.model_type, | 
					
					
						
						| 
							 | 
						            max_seq_length=data_args.max_seq_length, | 
					
					
						
						| 
							 | 
						            overwrite_cache=data_args.overwrite_cache, | 
					
					
						
						| 
							 | 
						            mode=Split.train, | 
					
					
						
						| 
							 | 
						        ) | 
					
					
						
						| 
							 | 
						        if training_args.do_train | 
					
					
						
						| 
							 | 
						        else None | 
					
					
						
						| 
							 | 
						    ) | 
					
					
						
						| 
							 | 
						    eval_dataset = ( | 
					
					
						
						| 
							 | 
						        TokenClassificationDataset( | 
					
					
						
						| 
							 | 
						            token_classification_task=token_classification_task, | 
					
					
						
						| 
							 | 
						            data_dir=data_args.data_dir, | 
					
					
						
						| 
							 | 
						            tokenizer=tokenizer, | 
					
					
						
						| 
							 | 
						            labels=labels, | 
					
					
						
						| 
							 | 
						            model_type=config.model_type, | 
					
					
						
						| 
							 | 
						            max_seq_length=data_args.max_seq_length, | 
					
					
						
						| 
							 | 
						            overwrite_cache=data_args.overwrite_cache, | 
					
					
						
						| 
							 | 
						            mode=Split.dev, | 
					
					
						
						| 
							 | 
						        ) | 
					
					
						
						| 
							 | 
						        if training_args.do_eval | 
					
					
						
						| 
							 | 
						        else None | 
					
					
						
						| 
							 | 
						    ) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    def align_predictions(predictions: np.ndarray, label_ids: np.ndarray) -> Tuple[List[int], List[int]]: | 
					
					
						
						| 
							 | 
						        preds = np.argmax(predictions, axis=2) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        batch_size, seq_len = preds.shape | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        out_label_list = [[] for _ in range(batch_size)] | 
					
					
						
						| 
							 | 
						        preds_list = [[] for _ in range(batch_size)] | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        for i in range(batch_size): | 
					
					
						
						| 
							 | 
						            for j in range(seq_len): | 
					
					
						
						| 
							 | 
						                if label_ids[i, j] != nn.CrossEntropyLoss().ignore_index: | 
					
					
						
						| 
							 | 
						                    out_label_list[i].append(label_map[label_ids[i][j]]) | 
					
					
						
						| 
							 | 
						                    preds_list[i].append(label_map[preds[i][j]]) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        return preds_list, out_label_list | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    def compute_metrics(p: EvalPrediction) -> Dict: | 
					
					
						
						| 
							 | 
						        preds_list, out_label_list = align_predictions(p.predictions, p.label_ids) | 
					
					
						
						| 
							 | 
						        return { | 
					
					
						
						| 
							 | 
						            "accuracy_score": accuracy_score(out_label_list, preds_list), | 
					
					
						
						| 
							 | 
						            "precision": precision_score(out_label_list, preds_list), | 
					
					
						
						| 
							 | 
						            "recall": recall_score(out_label_list, preds_list), | 
					
					
						
						| 
							 | 
						            "f1": f1_score(out_label_list, preds_list), | 
					
					
						
						| 
							 | 
						        } | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						     | 
					
					
						
						| 
							 | 
						    data_collator = DataCollatorWithPadding(tokenizer, pad_to_multiple_of=8) if training_args.fp16 else None | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						     | 
					
					
						
						| 
							 | 
						    trainer = Trainer( | 
					
					
						
						| 
							 | 
						        model=model, | 
					
					
						
						| 
							 | 
						        args=training_args, | 
					
					
						
						| 
							 | 
						        train_dataset=train_dataset, | 
					
					
						
						| 
							 | 
						        eval_dataset=eval_dataset, | 
					
					
						
						| 
							 | 
						        compute_metrics=compute_metrics, | 
					
					
						
						| 
							 | 
						        data_collator=data_collator, | 
					
					
						
						| 
							 | 
						    ) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						     | 
					
					
						
						| 
							 | 
						    if training_args.do_train: | 
					
					
						
						| 
							 | 
						        trainer.train( | 
					
					
						
						| 
							 | 
						            model_path=model_args.model_name_or_path if os.path.isdir(model_args.model_name_or_path) else None | 
					
					
						
						| 
							 | 
						        ) | 
					
					
						
						| 
							 | 
						        trainer.save_model() | 
					
					
						
						| 
							 | 
						         | 
					
					
						
						| 
							 | 
						         | 
					
					
						
						| 
							 | 
						        if trainer.is_world_process_zero(): | 
					
					
						
						| 
							 | 
						            tokenizer.save_pretrained(training_args.output_dir) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						     | 
					
					
						
						| 
							 | 
						    results = {} | 
					
					
						
						| 
							 | 
						    if training_args.do_eval: | 
					
					
						
						| 
							 | 
						        logger.info("*** Evaluate ***") | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        result = trainer.evaluate() | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        output_eval_file = os.path.join(training_args.output_dir, "eval_results.txt") | 
					
					
						
						| 
							 | 
						        if trainer.is_world_process_zero(): | 
					
					
						
						| 
							 | 
						            with open(output_eval_file, "w") as writer: | 
					
					
						
						| 
							 | 
						                logger.info("***** Eval results *****") | 
					
					
						
						| 
							 | 
						                for key, value in result.items(): | 
					
					
						
						| 
							 | 
						                    logger.info("  %s = %s", key, value) | 
					
					
						
						| 
							 | 
						                    writer.write("%s = %s\n" % (key, value)) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						            results.update(result) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						     | 
					
					
						
						| 
							 | 
						    if training_args.do_predict: | 
					
					
						
						| 
							 | 
						        test_dataset = TokenClassificationDataset( | 
					
					
						
						| 
							 | 
						            token_classification_task=token_classification_task, | 
					
					
						
						| 
							 | 
						            data_dir=data_args.data_dir, | 
					
					
						
						| 
							 | 
						            tokenizer=tokenizer, | 
					
					
						
						| 
							 | 
						            labels=labels, | 
					
					
						
						| 
							 | 
						            model_type=config.model_type, | 
					
					
						
						| 
							 | 
						            max_seq_length=data_args.max_seq_length, | 
					
					
						
						| 
							 | 
						            overwrite_cache=data_args.overwrite_cache, | 
					
					
						
						| 
							 | 
						            mode=Split.test, | 
					
					
						
						| 
							 | 
						        ) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        predictions, label_ids, metrics = trainer.predict(test_dataset) | 
					
					
						
						| 
							 | 
						        preds_list, _ = align_predictions(predictions, label_ids) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        output_test_results_file = os.path.join(training_args.output_dir, "test_results.txt") | 
					
					
						
						| 
							 | 
						        if trainer.is_world_process_zero(): | 
					
					
						
						| 
							 | 
						            with open(output_test_results_file, "w") as writer: | 
					
					
						
						| 
							 | 
						                for key, value in metrics.items(): | 
					
					
						
						| 
							 | 
						                    logger.info("  %s = %s", key, value) | 
					
					
						
						| 
							 | 
						                    writer.write("%s = %s\n" % (key, value)) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						         | 
					
					
						
						| 
							 | 
						        output_test_predictions_file = os.path.join(training_args.output_dir, "test_predictions.txt") | 
					
					
						
						| 
							 | 
						        if trainer.is_world_process_zero(): | 
					
					
						
						| 
							 | 
						            with open(output_test_predictions_file, "w") as writer: | 
					
					
						
						| 
							 | 
						                with open(os.path.join(data_args.data_dir, "test.txt"), "r") as f: | 
					
					
						
						| 
							 | 
						                    token_classification_task.write_predictions_to_file(writer, f, preds_list) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    return results | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						def _mp_fn(index): | 
					
					
						
						| 
							 | 
						     | 
					
					
						
						| 
							 | 
						    main() | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						if __name__ == "__main__": | 
					
					
						
						| 
							 | 
						    main() | 
					
					
						
						| 
							 | 
						
 |