Spaces:
Runtime error
Runtime error
import gradio as gr | |
import torch | |
from transformers import AutoModelForCausalLM, AutoTokenizer | |
from peft import PeftModel | |
# !python -c "import torch; assert torch.cuda.get_device_capability()[0] >= 8, 'Hardware not supported for Flash Attention'" | |
import json | |
import torch | |
from transformers import AutoTokenizer, AutoModelForCausalLM, BitsAndBytesConfig, GemmaTokenizer, StoppingCriteria, StoppingCriteriaList, GenerationConfig | |
import os | |
#sft_model = "somosnlp/gemma-FULL-RAC-Colombia_v2" | |
#sft_model = "somosnlp/RecetasDeLaAbuela_mistral-7b-instruct-v0.2-bnb-4bit" | |
#base_model_name = "unsloth/Mistral-7B-Instruct-v0.2" | |
sft_model = "somosnlp/RecetasDeLaAbuela_gemma-2b-it-bnb-4bit" | |
base_model_name = "unsloth/gemma-2b-it-bnb-4bit" | |
bnb_config = BitsAndBytesConfig( | |
load_in_4bit=True, | |
bnb_4bit_quant_type="nf4", | |
bnb_4bit_compute_dtype=torch.bfloat16 | |
) | |
max_seq_length=400 | |
# if torch.cuda.get_device_capability()[0] >= 8: | |
# # print("Flash Attention") | |
# attn_implementation="flash_attention_2" | |
# else: | |
# attn_implementation=None | |
attn_implementation=None | |
#base_model = AutoModelForCausalLM.from_pretrained(model_name,return_dict=True,torch_dtype=torch.float16,) | |
base_model = AutoModelForCausalLM.from_pretrained(base_model_name,return_dict=True,device_map="auto", torch_dtype=torch.float16,) | |
#base_model = AutoModelForCausalLM.from_pretrained(base_model_name, return_dict=True, device_map = {"":0}, attn_implementation = attn_implementation,).eval() | |
tokenizer = AutoTokenizer.from_pretrained(base_model_name, max_length = max_seq_length) | |
ft_model = PeftModel.from_pretrained(base_model, sft_model) | |
model = ft_model.merge_and_unload() | |
model.save_pretrained(".") | |
#model.to('cuda') | |
tokenizer.save_pretrained(".") | |
class ListOfTokensStoppingCriteria(StoppingCriteria): | |
""" | |
Clase para definir un criterio de parada basado en una lista de tokens específicos. | |
""" | |
def __init__(self, tokenizer, stop_tokens): | |
self.tokenizer = tokenizer | |
# Codifica cada token de parada y guarda sus IDs en una lista | |
self.stop_token_ids_list = [tokenizer.encode(stop_token, add_special_tokens=False) for stop_token in stop_tokens] | |
def __call__(self, input_ids, scores, **kwargs): | |
# Verifica si los últimos tokens generados coinciden con alguno de los conjuntos de tokens de parada | |
for stop_token_ids in self.stop_token_ids_list: | |
len_stop_tokens = len(stop_token_ids) | |
if len(input_ids[0]) >= len_stop_tokens: | |
if input_ids[0, -len_stop_tokens:].tolist() == stop_token_ids: | |
return True | |
return False | |
# Uso del criterio de parada personalizado | |
stop_tokens = ["<end_of_turn>"] # Lista de tokens de parada | |
# Inicializa tu criterio de parada con el tokenizer y la lista de tokens de parada | |
stopping_criteria = ListOfTokensStoppingCriteria(tokenizer, stop_tokens) | |
# Añade tu criterio de parada a una StoppingCriteriaList | |
stopping_criteria_list = StoppingCriteriaList([stopping_criteria]) | |
def generate_text(prompt, context, max_length=2100): | |
prompt=prompt.replace("\n", "").replace("¿","").replace("?","") | |
input_text = f'''<bos><start_of_turn>system ¿{context}?<end_of_turn><start_of_turn>user ¿{prompt}?<end_of_turn><start_of_turn>model''' | |
inputs = tokenizer.encode(input_text, return_tensors="pt", add_special_tokens=False).to("cuda:0") | |
max_new_tokens=max_length | |
generation_config = GenerationConfig( | |
max_new_tokens=max_new_tokens, | |
temperature=0.32, | |
#top_p=0.9, | |
top_k=50, # 45 | |
repetition_penalty=1.04, #1.1 | |
do_sample=True, | |
) | |
outputs = model.generate(generation_config=generation_config, input_ids=inputs, stopping_criteria=stopping_criteria_list,) | |
return tokenizer.decode(outputs[0], skip_special_tokens=False) #True | |
def mostrar_respuesta(pregunta, contexto): | |
try: | |
res= generate_text(pregunta, contexto, max_length=500) | |
return str(res) | |
except Exception as e: | |
return str(e) | |
# Ejemplos de preguntas | |
mis_ejemplos = [ | |
["¿Dime la receta de la tortilla de patatatas?"], | |
["¿Dime la receta del ceviche?"], | |
["¿Como se cocinan unos autenticos frijoles?"], | |
] | |
iface = gr.Interface( | |
fn=mostrar_respuesta, | |
inputs=[gr.Textbox(label="Pregunta"), gr.Textbox(label="Contexto", value="You are a helpful AI assistant. Eres un experto cocinero hispanoamericano."),], | |
outputs=[gr.Textbox(label="Respuesta", lines=2),], | |
title="Recetas de la Abuel@", | |
description="Introduce tu pregunta sobre recetas de cocina.", | |
ejemplos=mis_ejemplos, | |
) | |
iface.queue(max_size=14).launch() # share=True,debug=True |