itama-app / app.py
Luster's picture
texto articulo
8171c1b
raw
history blame
2.08 kB
import gradio as gr
from simpletransformers.t5 import T5Model , T5Args
model_args = T5Args()
model_args.num_train_epochs = 3
#model_args.no_save = True
#model_args.evaluate_generated_text = True
#model_args.evaluate_during_training = True
#model_args.evaluate_during_training_verbose = True
model_args.overwrite_output_dir = True
model_args.fp16 = False
model_args.use_cuda = False
model_args.use_multiprocessing = False
model_args.use_multiprocessing_for_evaluation = False
model_args.use_multiprocessed_decoding = False
model_args.learning_rate=0.001
#model_args.num_beams = 3
model_args.train_batch_size = 4
model_args.eval_batch_size = 4
model_args.adafactor_beta1 = 0
model_args.length_penalty=1.5
model_args.max_length=100
model_args.max_seq_length = 100
model = T5Model("mt5", "hackathon-pln-es/itama", args=model_args , use_cuda=False)
article = '''
# ITAMA
Reddit (y sus subreddits en español), proveen una gran cantidad de hilos en donde expertos se ofrecen a
contestar voluntariamente preguntas y los usuarios realizan preguntas que en un contexto normal podrían
ser considerado tabú. Esperamos poder generar un modelo con estas preguntas-respuestas que pueda consolidar
este conocimiento y responder a preguntas frecuentes en topicos de interés común y/o bienestar personal. '''
def predict(input_text):
p = model.predict([input_text])[0]
return p
gr.Interface(
fn=predict,
inputs=gr.inputs.Textbox(lines=1, label="Pregunta por profesión - {profesión}: {pregunta}"),
outputs=[
gr.outputs.Textbox(label="Respuesta"),
],
theme="peach",
title='Modelo predicctivo AMA Reddit',
description='Modelo T5 Transformer (mt5-base), utilizando dataset de preguntas y respuestas de AMA Reddit',
examples=[
'psicologo: cuanto trabajas al año?',
'jefe: cuanto trabajas al año?',
'profesor: cuando dinero ganas al año?',
],
article=article,
allow_flagging="manual",
#flagging_options=["right translation", "wrong translation", "error", "other"],
flagging_dir="logs"
).launch(enable_queue=True)