AlvaroHuertas commited on
Commit
0c78ac9
1 Parent(s): c9695b1

Pothole detector

Browse files
Files changed (3) hide show
  1. .gitignore +2 -0
  2. app.py +61 -4
  3. requirements.txt +47 -0
.gitignore ADDED
@@ -0,0 +1,2 @@
 
 
 
1
+ .env
2
+ best.pt
app.py CHANGED
@@ -1,7 +1,64 @@
1
  import gradio as gr
 
 
 
2
 
3
- def greet(name):
4
- return "Hello " + name + "!!"
5
 
6
- iface = gr.Interface(fn=greet, inputs="text", outputs="text")
7
- iface.launch()
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  import gradio as gr
2
+ import cv2
3
+ import requests
4
+ import os
5
 
6
+ from ultralytics import YOLO
 
7
 
8
+ file_urls = [
9
+ "https://www.dropbox.com/s/b5g97xo901zb3ds/pothole_example.jpg?dl=1",
10
+ "https://www.dropbox.com/s/86uxlxxlm1iaexa/pothole_screenshot.png?dl=1",
11
+ "https://www.dropbox.com/s/7sjfwncffg8xej2/video_7.mp4?dl=1",
12
+ ]
13
+
14
+
15
+ def download_file(url, save_name):
16
+ url = url
17
+ if not os.path.exists(save_name):
18
+ file = requests.get(url)
19
+ open(save_name, "wb").write(file.content)
20
+
21
+
22
+ for i, url in enumerate(file_urls):
23
+ if "mp4" in file_urls[i]:
24
+ download_file(file_urls[i], f"video.mp4")
25
+ else:
26
+ download_file(file_urls[i], f"image_{i}.jpg")
27
+
28
+ model = YOLO("best.pt")
29
+ path = [["image_0.jpg"], ["image_1.jpg"]]
30
+ video_path = [["video.mp4"]]
31
+
32
+
33
+ def show_preds_image(image_path):
34
+ image = cv2.imread(image_path)
35
+ outputs = model.predict(source=image_path)
36
+ results = outputs[0].cpu().numpy()
37
+ for i, det in enumerate(results.boxes.xyxy):
38
+ cv2.rectangle(
39
+ image,
40
+ (int(det[0]), int(det[1])),
41
+ (int(det[2]), int(det[3])),
42
+ color=(0, 0, 255),
43
+ thickness=2,
44
+ lineType=cv2.LINE_AA,
45
+ )
46
+ return cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
47
+
48
+
49
+ inputs_image = [
50
+ gr.components.Image(type="filepath", label="Input Image"),
51
+ ]
52
+
53
+
54
+ outputs_image = [
55
+ gr.components.Image(type="numpy", label="Output Image"),
56
+ ]
57
+ interface_image = gr.Interface(
58
+ fn=show_preds_image,
59
+ inputs=inputs_image,
60
+ outputs=outputs_image,
61
+ title="Pothole detector",
62
+ examples=path,
63
+ cache_examples=False,
64
+ )
requirements.txt ADDED
@@ -0,0 +1,47 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Ultralytics requirements
2
+ # Usage: pip install -r requirements.txt
3
+
4
+ # Base ----------------------------------------
5
+ hydra-core>=1.2.0
6
+ matplotlib>=3.2.2
7
+ numpy>=1.18.5
8
+ opencv-python>=4.1.1
9
+ Pillow>=7.1.2
10
+ PyYAML>=5.3.1
11
+ requests>=2.23.0
12
+ scipy>=1.4.1
13
+ torch>=1.7.0
14
+ torchvision>=0.8.1
15
+ tqdm>=4.64.0
16
+ ultralytics
17
+
18
+ # Logging -------------------------------------
19
+ tensorboard>=2.4.1
20
+ # clearml
21
+ # comet
22
+
23
+ # Plotting ------------------------------------
24
+ pandas>=1.1.4
25
+ seaborn>=0.11.0
26
+
27
+ # Export --------------------------------------
28
+ # coremltools>=6.0 # CoreML export
29
+ # onnx>=1.12.0 # ONNX export
30
+ # onnx-simplifier>=0.4.1 # ONNX simplifier
31
+ # nvidia-pyindex # TensorRT export
32
+ # nvidia-tensorrt # TensorRT export
33
+ # scikit-learn==0.19.2 # CoreML quantization
34
+ # tensorflow>=2.4.1 # TF exports (-cpu, -aarch64, -macos)
35
+ # tensorflowjs>=3.9.0 # TF.js export
36
+ # openvino-dev # OpenVINO export
37
+
38
+ # Extras --------------------------------------
39
+ ipython # interactive notebook
40
+ psutil # system utilization
41
+ thop>=0.1.1 # FLOPs computation
42
+ # albumentations>=1.0.3
43
+ # pycocotools>=2.0.6 # COCO mAP
44
+ # roboflow
45
+
46
+ # HUB -----------------------------------------
47
+ GitPython>=3.1.24