Rename multilingual_audio_chat.py to app.py
Browse files
multilingual_audio_chat.py → app.py
RENAMED
@@ -21,6 +21,12 @@ import soundfile as sf
|
|
21 |
import librosa
|
22 |
import torch
|
23 |
import os
|
|
|
|
|
|
|
|
|
|
|
|
|
24 |
# import torchaudio
|
25 |
from transformers import Wav2Vec2ForCTC, Wav2Vec2Tokenizer
|
26 |
from transformers import AutoModelForCTC, AutoProcessor, AutoTokenizer, AutoModelForCausalLM
|
@@ -230,14 +236,6 @@ def generate_text_and_display_audio(row, model, tokenizer):
|
|
230 |
|
231 |
# In[16]:
|
232 |
|
233 |
-
|
234 |
-
import soundfile as sf
|
235 |
-
import librosa
|
236 |
-
import noisereduce as nr
|
237 |
-
import numpy as np
|
238 |
-
import gradio as gr
|
239 |
-
import pyloudnorm as pyln
|
240 |
-
|
241 |
def spectral_subtraction(audio_data, sample_rate):
|
242 |
# Compute short-time Fourier transform (STFT)
|
243 |
stft = librosa.stft(audio_data)
|
|
|
21 |
import librosa
|
22 |
import torch
|
23 |
import os
|
24 |
+
import soundfile as sf
|
25 |
+
import librosa
|
26 |
+
import noisereduce as nr
|
27 |
+
import numpy as np
|
28 |
+
import gradio as gr
|
29 |
+
import pyloudnorm as pyln
|
30 |
# import torchaudio
|
31 |
from transformers import Wav2Vec2ForCTC, Wav2Vec2Tokenizer
|
32 |
from transformers import AutoModelForCTC, AutoProcessor, AutoTokenizer, AutoModelForCausalLM
|
|
|
236 |
|
237 |
# In[16]:
|
238 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
239 |
def spectral_subtraction(audio_data, sample_rate):
|
240 |
# Compute short-time Fourier transform (STFT)
|
241 |
stft = librosa.stft(audio_data)
|